

Daniel A. Sullivan, Mayor

2014 Dry Weather Screening Report APDES Permit No. AKS-052558

MUNICIPALITY OF ANCHORAGE WATERSHED MANAGEMENT SERVICES

November 2014

Table of Contents

1	Introduction1						
	1.1	Background 1					
	1.2	Program Definition1					
	1.3	Screening Program					
2	Project S	ummary2					
	2.1	Sampling Location Selection					
	2.2	Outfall Sample Locations					
	2.3	Measured Parameters 7					
	2.4	Sample Collection Procedures					
	2.4.1	Arrival at Sampling Site8					
	2.4.2	Flow Analyses9					
	2.4.3	Water Quality Sampling9					
	2.5	Chain of Custody9					
	2.6	Laboratory Sampling Parameters					
	2.7	Deviation from the QAP 10					
3	Results						
	3.1	Field and Laboratory Results					
	3.2	Quality Assurance and Quality Control11					
	3.3	Data Validation					
4	Discussio	n13					
	4.1	Threshold exceedances					
	4.2	Other observations					
	4.3	Damaged and unmapped outfalls					
	4.4	Future Dry Weather Screening					
Re	eferences						

Tables

Table 1. Criteria scores and ranking of watersheds.	. 4
Table 2. Sampling Site Locations	. 5
Table 3. List of parameters and the methods and thresholds	. 8
Table 4. Sample Results for Field Parameters and Laboratory Analyses	11
Table 5. Field Replicate Results	12
Table 6. New, Damaged, Clogged and Submerged Outfalls	14

Appendices

Appendix A Watershed Maps

Appendix B Field Notebook

Appendix C Field Data Sheets

Appendix D Chains of Custody

Appendix E Data Package

Appendix F Outfall Sampling Site Photographs

1 Introduction

1.1 Background

The U.S. Environmental Protection Agency (EPA) issued the Municipality of Anchorage (MOA) and the Alaska Department of Transportation and Public Facilities (ADOT&PF) a Municipal Separate Storm Sewer System (MS4) permit under the National Pollutant Discharge Elimination System (NPDES) in 1999. The permit is now administered under the Alaska Pollutant Discharge Elimination System (APDES). To meet the requirements of the permit, MOA initiated a dry weather screening program in 1999 to identify the potential illicit discharges to the MS4 and conducted this program during the dry season (typically May through mid July) each year through 2009.

EPA re-issued the permit prior to the state receiving primacy to operate the NPDES program. The state soon took over operation of the re-issued permit, now an APDES MS4 permit. The permit became effective February 1, 2010. The permit continues the requirement of dry weather screening and subsequent follow-up actions to identify illicit discharges and associated pollutants from the MS4.

1.2 Program Definition

Dry weather screening is conducted to identify illicit discharges to the MS4 within the MOA. Illicit discharges, such as those from industrial process wastewater, domestic wastewater, car wash wastewater and other sources, can introduce pollutants inadvertently both directly and indirectly to the storm sewer system. Identification is the first step to eliminating these illicit discharges. Flow from storm drain outfalls during dry weather is generally an indicator of improper discharges to the MS4. To identify potential illicit discharges, field screening and laboratory testing techniques are used to identify obvious pollutant concentrations in what is expected to be clean stormwater. Guidance on illicit discharge screening identifies a list of 15 indicator parameters that can be used to confirm the presence of illicit discharges, noting that generally only 3 to 5 of these parameters need to be used to characterize the discharge for subsequent identification and elimination of the discharge (CWP and Pitt, 2004).

1.3 Screening Program

The MS4 permit (Section II part B.5.d) requires the MOA to sample flow from at least 15 stormwater outfalls and to have an additional 30 outfalls prioritized each year for sampling as alternate sites, should an outfall be dry. The permit also requires that outfalls be geographically dispersed and represent all major land uses with in the municipality. The permit specifies screening for seven parameters including: pH, total chlorine, detergents, total copper, total phenol, fecal coliform, and turbidity. Benchmark or threshold exceedances are used to trigger further action and provide information to support that action.

When a dry weather screening parameter exceeds a threshold, field crews will immediately notify the MOA Project Manager of the location and parameter of exceedance so that follow-up actions can be initiated. For fecal coliform results that exceed the thresholds, the laboratory Project Manager will be requested to notify the Contract QA Officer immediately after the

¹

analysis is complete (within approximately 24 hours). The Contract QA Officer will immediately notify the MOA Project Manager for follow-up action. Follow-up actions are described in the flow chart in Attachment F-1 of Appendix F (Dry Weather Screening Monitoring Plan) in the QAP (MOA, 2012).

2 Project Summary

2.1 Sampling Location Selection

Dry weather screening sampling locations were selected in a semi-systematic way. Twelve watersheds were identified for inclusion in this study (MOA, 2011). Over the duration of the permit, qualifying outfalls representing a variety of land uses in all 12 watersheds will be sampled. The method established for ranking these watersheds takes into consideration many attributes of the watershed. These include;

- outfalls that discharge to an impaired water body
- evidence of contamination in the three years prior to ranking
- percentage of impervious cover
- the proportion of commercial/industrial land uses (including schools and parks)

To prioritize the target watersheds for this permit cycle, the 12 watersheds were ranked using the criteria and scoring system provided below. Typically, three watersheds are selected for sampling during a single year. The ranking system will be used for the duration of the permit cycle to determine which watersheds are examined during a given year. During the first year (2011) of the sampling effort the top three watersheds were studied; during the second year (2012), those ranked 3-6 were studied; and so on throughout the permit cycle.

The criteria used for ranking watersheds are described in the following six-step process:

- 1. Does the watershed drain to a Category 4 water body (water body with a Total Maximum Daily Load (TMDL) in place, an active pollution control program, or impaired by something other than a pollutant (i.e. channelization)) or a 303(d) listed Category 5 water body (polluted water body that has no TMDL in place, but requires TMDLs or pollution control plan) for one of the pollutants of concern (POCs)?
 - a. If no, assign 1 point to the watershed.
 - b. If yes, assign 5 points to the watershed.
- 2. Calculate the number of outfalls with threshold exceedances over the 2007 to 2009 period divided by the number of outfalls sampled in that watershed over the three year period, and compare to table below for point assignments. If an outfall had exceedances for 2 or more POCs on the same date, count each exceedance.

% of outfalls sampled with threshold exceedances	Points
>90	20
80-89	18
70-99	16
60-69	14
50-59	12
40-49	10
30-39	8
20-29	6
10-19	4
1-9	2
0	0

3. Assign points to the watersheds based on the relative impervious area within the Anchorage bowl, Eagle River, and Girdwood areas as listed in the table below:

% Impervious Area	Points
>90	5
70-89	4
50-69	3
<50	1

4. Assign points to the watersheds based on the percentage of commercial and industrial land uses within the Anchorage bowl, Eagle River, and Girdwood areas as listed in the table below:

С/І%	Points
>80	6
60-79	5
40-59	4
20-39	3
<20	2

- 5. Add the points for each watershed.
- 6. Rank the watersheds from highest to lowest.

Using the above criteria, the 12 watersheds were scored and ranked as shown in Table 1.

Rank	Watershed	Category 4 or 5 Water Body	Percent Exceedances	Impervious Area	Commercial Industrial	Total Score
1	Fish Cr.	5	20	3	2	30
2	Campbell Cr.	5	18	1	2	26
3	Eagle River	5	16	1	2	24
4	Ship Cr.	5	14	1	2	22
5	Chester Cr.	5	12	1	2	20
6	Furrow Cr.	5	0	1	2	8
6	Rabbit Cr.	5	0	1	2	8
8	Mirror Cr.	1	0	1	2	4
8	Peters Cr.	1	0	1	2	4
8	Hood Cr.	1	0	1	2	4
8	Potter Cr.	1	0	1	2	4
8	Glacier Cr.	1	0	1	2	4

Table 1. Criteria scores and ranking of watersheds.

Bold indicates watersheds sampled in 2014.

To identify the outfalls to be examined within the watersheds, the following procedures were used:

- 1. Outfalls that did not both 1) fit the definition of outfall provided at 40 CFR 122.25(b)(9) and 2) are owned by the Municipality of Anchorage or ADOT & PF were eliminated from consideration. Outfalls fitting these criteria were preliminarily identified from the MOA and ADOT's storm sewer inventory and mapping before field mobilization. Samples from privately owned pipes or ditches were not considered part of the dry weather screening program. Pipes that convey streamflow were also not considered except when these pipes function as storm sewers.
- 2. The list of complaints received by MOA in the previous year that involve discharges from the MS4 was examined. Within each watershed to be sampled, outfalls directly associated with these complaints were targeted for sampling. No complaints were identified for the watersheds examined during the 2014 sampling effort.
- 3. Each watershed was divided approximately in half (an upper watershed and a lower watershed). Since no complaint outfalls could be targeted, outfalls were added beginning at the mouth of the lower half of the watershed and at the beginning of the upper half of the watershed with the goal of identifying five sample sites in the watershed. These were to be the primary sampling sites within that watershed. An additional ten alternate outfall sites were also to be identified (five in the lower and five in the upper watershed). An alternate site was sampled when a primary site could not be sampled.

Prior to the 2014 Dry Weather Screening effort all identified watersheds with an MS4 in the MOA had been examined. In order to reach a total of 15 primary and 30 alternate outfalls four different watersheds were re-examined.

2.2 Outfall Sample Locations

Prior to any field effort sampling sites were identified through a GIS analysis using the 2013 hydrography geodatabase (HGDB). The field team performed reconnaissance trips to verify the data and to ensure the outfalls were otherwise suitable for sampling (safe access, flowing water, etc.). Notes recorded during the reconnaissance trip were recorded in a field log book (Appendix B).

Table 2 lists the outfalls that were investigated in each of the watersheds. Outfall codes (numbers assigned to all nodes in the HGDB MS4 network) in parenthesis are those selected as primary outfalls for sampling. The bold outfall codes in the table indicate outfalls that were sampled. Outfall codes that are underlined are sites that were visited, but had no flowing water. Maps of the watersheds and the outfalls investigated are presented in Appendix A.

Watershed Outfall Code I		Latitude	Longitude	Location Description and Notes		
Ship Creek	(436-1)	61.22406	-149.88733	North bank of Ship Creek, east of C St bridge.		
Ship Creek	(550-2)	61.22343	-149.88535	South bank of Ship Creek just east of the Bridge Restaurant.		
Ship Creek	119-1	61.22326	-149.88040	Downstream of dam on left bank near access steps. Rusted pipe with slow trickle.		
Ship Creek	46-1	61.22405	-149.88038	Just upstream of sport fishing cut-off line on right bank. Sample only at lowest tide		
Ship Creek	(213-1)	61.22363	-149.86916	North of Allied property		
Ship Creek	(491-1)	61.22328	-149.87575	On Ship Creek trail near Alaska Flor- Wall Distributors		
Ship Creek	189-1	61.22305	-149.85827	Near Post Rd crossing. Submerged, sample only if you can reach into pipe.		
Fish Creek	(595-1)	61.18977	-149.93208	Between W 34 th Ave and Kona Lane		
Fish Creek	584-1	61.18545	-149.93403	Right bank opposite of park on Turnagain Blvd. Under a lot of debris and end of pipe clogged with dirt. Flow coming out from under rusted portion of pipe.		
Fish Creek	1312-19	61.18353	-149.93357	Behind fence of a storage lot between the park on Turnagain Blvd and Spenard Rd. Trickling water.		
Fish Creek	686-1	61.18217	-149.93486	Near parking lot just off of Spenard Rd on Turnagain Blvd. Submerged, sample only if you can reach up into pipe.		
Fish Creek (388-201) 61.17831		61.17831	-149.92818	Corner of Northwood Drive and Haru Lane		
Fish Creek 480-1 61.17944		61.17944	-149.92810	At bend in creek halfway in betwwen West 45 th and West 46 th . Potentially standing water.		

 Table 2. Sampling Site Locations

Watershed	Outfall Code	Latitude	Longitude	Location Description and Notes
Fish Creek	1003-1	61.18119	-149.91848	Plastic pipe at edge of parking lot near Spenard Building Supply on West Tudor Rd. Dripping water.
Fish Creek	(37-1)	61.18677	-149.90759	Chugach Way near Spenard Road
Fish Creek	411-8	61.18068	-149.84473	Tudor Rd. west of Lake Otis on south side of road next to culvert crossing. Trickle of water.
Eagle River	<u>(541-1)</u>	61.29843	-149.52203	East of Mountain Point Circle
Eagle River	(1417-1)	61.29865	-149.51363	South of Eagle Place addresses 19920 and 19862 Driftwood Bay Drive
Eagle River	(1451-1)	61.29965	-149.50851	Near west corner of Riverside Drive
Eagle River	(646-71)	61.31722	-149.55438	South bank; Chain of Rock Street and Teklanika Drive about 100 feet downstream of street crossing. On Meadow Creek.
Eagle River	<u>(ER-4)</u>	61.29866	-149.52623	East of Mountain Point Circle
Eagle River	1375-99	61.31725	-149.55412	North bank; Chain of Rock Street very near culvert – Not included in HGDB. On Meadow Creek. 1375-99 is a temporary placeholder name.
Campbell Creek	685-1	61.13729	-149.92497	South side of Dimond Blvd crossing.
Campbell Creek	Campbell Creek 556-2-1 61		-149.90879	Inlet to sedimentation pond west of Minnesota Dr.
Campbell Creek	297-1	61.14522	-149.89607	Near Summerset Dr at access to bike path.
Campbell Creek	(581-1)	61.14640	-149.89273	Near bike path at Arctic Blvd.
Campbell Creek	(1488-1)	61.14674	-149.89046	Near C St. and Dimond behind restaurant parking lot.
Campbell Creek	546-1	61.15200	-149.88192	Near parking lot of Taku Lake.
Campbell Creek	111-1	61.15508	-149.87957	Access from Huntaman Circle.
Campbell Creek	100-1	61.15903	-149.87516	Near Fairweather Park Loop
Campbell Creek	468-1	61.16605	-149.87359	Near bike path at Dowling Rd.
Campbell Creek	npbell Creek 1454-2 61.16281 -149.8769		-149.87692	Near Lynwood Drive.
Campbell Creek	bell Creek 271-1 61.17263 -149.87023 Near Old S Airport Rd.		Near Old Seward Hwy and International Airport Rd.	
Campbell Creek	(496-1)	61.14994	-149.82643	Adjacent to Nadine Street.

Watershed	Outfall Code	Latitude	Longitude	Location Description and Notes
Campbell Creek	18-107C	61.14942	-149.82296	Multiple ends-of-pipe for outfall 18-107. This is labelled "C" and drains into small pond through Oil and Grit Separator on 80 th .
Campbell Creek	364-1	61.14926	-149.81944	Very low flow. On Spruce Street north of 80 th .
Campbell Creek	551-1	61.15018	-149.82574	Located behind duplex where Travis Lane dead ends into Snow View Dr. Access from Grey Wolf Circle.
Campbell Creek	475-1	61.14845	-149.85826	On 80 th near Greenwood Street. Slightly flowing.
Campbell Creek	692-24	61.15931	-149.85329	On 68 th Avenue near Brayton Drive.
Campbell Creek	692-15	61.15930	-149.85373	A, B, C denote three ends-of-pipe into sedimentation basin at 68 th Avenue and meadow Street.
Campbell Creek	(1056-117)	61.16103	-149.82492	Southwest corner of Carriage Drive
Campbell Creek	1056-8	61.16106	-149.82550	"A" marks inlet to sedimentation basin near Carriage Drive.
Campbell Creek	446-1	61.15736	-149.80449	On Elmore Road near end of Redhawk Circle.

1) Sites in parenthesis () are sites selected as primary sites.

2) **Bold** font indicates outfalls that were sampled.

3) Underlined font indicates outfalls that were dry at the time of sampling.

4) Standard font indicates sites that were selected as alternates, but were not visited because the sample quota had been met.

2.3 Measured Parameters

The 2014 dry weather screening sampling effort was conducted similar to the 2013 effort. A sample was collected for laboratory analysis of fecal coliform while all the other parameters were analyzed in the field using test kits or water quality meters.

Table 3 provides the screening parameters required by the permit and the thresholds that were used to compare outfall sample results. Appendix F, Dry Weather Screening Monitoring Plan, of the QAP (2012) provides rationale for screening parameter thresholds. Thresholds are established at concentrations sufficiently different from clean stormwater to detect potential illicit discharges. In a guidance manual the Center for Watershed Protection and Robert Pitt (2004) recommend benchmarks (thresholds) orders of magnitude higher than ambient stormwater quality to reduce the incidences of false positives. Thresholds in Table 3 were established based on available environmental data and field test kit specifications. Values below the threshold are considered to be within an acceptable range for background concentrations. Values at or above the threshold concentration for a parameter indicate that the parameter may be above background concentrations. Outfalls with results that exceeded the threshold (or outside the pH range) for one or more of the pollutant indicators were targeted for follow-up action.

Parameter	Method	Reporting Range	Threshold
рН	pH test strips, YSI 556	0 - 14 STD	\leq 4 or \geq 9 STD
Total Chlorine	LaMott Total Chlorine Octa-Slide Bar kit (3314) (EPA 330.5)	0.1 - 6.0 mg/L	$\geq 1.0 \text{ mg/L}$
Detergents	Hach model DE-1 Toluidine blue colorimetric (Analytical Chemistry Method #38-791)	0.05 - 1 mg/L	\geq 1.0 mg/L
Total Copper	Zincon colorimetric (LaMOTTE [®] EC-70 Code 3619)	0.05 – 1.0 mg/L	$\geq 1.0 \text{ mg/L}$
Total Phenols	LaMott 4 Amino Anti-Pyrene (4 AAP) colorimetric (SM 5530C)	0.1 - 1 mg/L	\geq 0.5 mg/L
Turbidity	Hach 2100P Turbidimeter	0.1 - 1,000 NTU	\geq 250 NTU
Fecal Coliform	Standard Methods 9222D	1 col/100 mL – too numerous to count	\geq 400 col/100 mL

Table 3. List of parameters and the methods and thresholds
--

2.4 Sample Collection Procedures

2.4.1 Arrival at Sampling Site

Field sampling was conducted after at least 48 hours of dry weather following a storm event that created runoff in the MS4. The National Weather Service Forecast website (NWS, 2014) was consulted to determine appropriate sample timing when necessary. The field team conducted calibration and equipment blank analyses at the beginning of each day of sampling prior to entering the field. This equipment blank analysis examined each test kit by testing deionized water provided by the laboratory. The calibration and field test kit equipment blank data were recorded in the field data sheets and are provided in Appendix C. The team took the following items into the field:

- Outfall list
- YSI 556 water quality meter
- Hach turbidity meter
- Laboratory supplied fecal coliform bottles
- Water analysis sampling protocols
- GPS unit

- Site maps
- pH test strips
- LaMotte and Hach water quality field test kits
- Field sampling supplies
- Digital camera
- Field sheets with guidelines

Each day before departing for field sampling the team went through a safety briefing. Upon arriving at the site, the team completed the General Information data collection as described on the back of the field form (Appendix C). Completed forms are also provided in Appendix C. Additional information not included on data sheets was recorded in the field log book (Appendix B).

2.4.2 Flow Analyses

After the general site information was recorded, the field crew determined the outfall flow using one of the methods described below (determined by site conditions). Results of the flow analysis can be found in Table 4 in section 4.0.

Primary method: Measure the length of time required to fill 1 gallon of a calibrated bucket or a 1-liter bottle using a stop watch.

Secondary method (if the team member is unable to measure the flow): visually estimate the flow as one of the following:

- Low flow of water is not intense and moving very slowly
- Medium flow of water is moving at a moderate pace
- High flow of water is intense and moving very quickly

2.4.3 Water Quality Sampling

After measuring flow, pH was measured using a YSI 556 and verified using pH test strips. The probe was placed directly into flowing water where deep enough to submerge the probe. When the flow in the pipe was not deep enough to submerge the probe, a bucket was used to capture outfall water. The outfall water was permitted to continue to flow into and out of the bucket while the pH probe was submerged. The test strips were dipped directly into the flowing water.

A grab sample of the water flowing out of the end of pipe was then collected using a clean 1-liter HDPE plastic bottle. This water was used for all of the field test kits. Next, the sample bottle for laboratory analysis of fecal coliform was filled directly from the outfall flow.

After the water samples were collected, the field team recorded visual observations and measurements about the clarity of the water and its color.

Using the water from the 1-liter bottle, the field crew measured total chlorine, detergents, turbidity, total phenols, and total copper with field kits as described on the back of the field data form (Appendix C). Field measurements were recorded and compared against the thresholds described in Table 3.

The field crew conducted replicate sample analyses at a rate of at least 15% per day per parameter (once per day). The field crew also collected replicate samples for the laboratory fecal coliform analysis at a rate of 15% per day per parameter (once per day).

2.5 Chain of Custody

The field crew team leader completed a chain of custody form which included each sample collected during a single field day for sample tracking. The original form was delivered with the samples to SGS North America, Inc (SGS), the laboratory conducting fecal coliform analysis. Copies of the chain of custody are provided in Appendix D.

2.6 Laboratory Sampling Parameters

Fecal coliform samples were transported to SGS for analysis. Fecal coliform was analyzed using standard method 9222D (Table 3). The samples were collected in laboratory-provided sample

bottles. The project name, sample ID, sample date and time, and name of sampler were clearly marked on the sample container labels. Samples were stored in a cooler with gel ice and a temperature blank while in the field. The samples were delivered to the laboratory within six hours to satisfy the short hold time of the fecal coliform samples.

An expedited turn-around time was requested for results from SGS in order to expedite followup sampling in the event of sampling thresholds being exceeded. Follow-up tasks were planned to take place after the laboratory results were available to reduce the field effort. To expedite the receipt of results, SGS provided the results through Engage, an on-line document portal.

2.7 Deviation from the QAP

No deviations from the QAP were necessary.

The QAP (MOA, 2012) allows for sites to be passed over for sample consideration if the team could not access the outfall due to lack of safe access or private property concerns. Although the HGDB for the watersheds in the Anchorage bowl is fairly accurate, the precise location and nature of an outfall is not always provided in the GIS data. For example, many outfalls drain into a culvert passing under a road, or are open drainage ditches. Both of these conditions disqualify the outfall from sampling consideration. These conditions were recorded and the team moved to the next outfall.

3 Results

3.1 Field and Laboratory Results

The results of 2014 dry weather screening are provided in Table 4. Complete laboratory results are provided in Appendix E. No site had an exceedance for any of the parameters.

Watershed	Site ID	Date	Flow (g/min)	рН	Total Chlorine (mg/L)	Detergents (mg/L)	Total Phenols (mg/L)	Turbidity (NTU)	Total Copper (mg/L)	Fecal Coliform (colonies/ 100mL)
Ship Creek	436-1	7/16/14	Low	7.32	<0.5	<0.05	<0.1	1.50	< 0.05	ND
Ship Creek	550-2 Duplicate	7/16/14	Medium	7.30 7.26	<0.5 <0.5	<0.05 <0.05	<0.1 <0.1	20.1	<0.05 <0.05	118
Ship Creek	213-1	7/16/14	High	6.88	<0.5	< 0.05	<0.1	1.36	< 0.05	ND
Ship Creek	491-1 Duplicate	7/16/14	Medium	6.83	<0.5	<0.05	<0.1	3.57	<0.05	300 230
Fish Creek	595-1 Duplicate	7/17/14	0.2, Low	6.93 6.90	<0.5 <0.5	<0.05 <0.05	<0.1 <0.1	5.46 5.37	<0.05 <0.05	ND ND
Fish Creek	388-201	7/17/14	Medium	6.39	<0.5	<0.05	<0.1	15.2	< 0.05	2
Fish Creek	37-1 Duplicate	7/17/14	Low	6.70	<0.5	<0.05	<0.1	154 158	<0.05	16
Eagle River	1417-1	7/18/14	Medium	6.80	<0.5	<0.05	<0.1	2.25	< 0.05	4
Eagle River	1451-1 Duplicate	7/18/14	Low	6.55 6.51	<0.5 <0.5	<0.05 <0.05	<0.1 <0.1	0.67 0.62	<0.05 <0.05	2 ND
Eagle River	646-71	7/18/14	High	7.18	<0.5	<0.05	<0.1	0.73	< 0.05	48
Eagle River	1375-99	7/18/14	High	6.77	<0.5	<0.05	<0.1	0.31	< 0.05	ND
Campbell Creek	581-1 Duplicate	7/21/14	Low	7.19 7.20	<0.5 <0.5	0.45 0.55	<0.1 <0.1	2.22	<0.05	17 31
Campbell Creek	1488-1 Duplicate	7/21/14	5, Medium	6.88	<0.5	0.10	<0.1	21.8 21.7	<0.05	12
Campbell Creek	496-1	7/21/14	Medium	7.14	<0.5	0.15	<0.1	40.1	<0.05	30
Campbell Creek	1056-117	7/21/14	1.5, Low	6.44	<0.5	<0.05	<0.1	7.14	<0.05	12

1) *Italicized* results are notably higher results than other sites, but are not exceedances.

3.2 Quality Assurance and Quality Control

Quality Assurance and Quality Control (QA/QC) procedures were followed according to the Monitoring, Evaluation, and Quality Assurance Plan (MOA, 2012). The procedures included analytical checks (field replicates, equipment blanks), instrument calibration, and procedures to assess data for precision, accuracy, representativeness, comparability, and completeness.

3.3 Data Validation

Verification analyses for laboratory parameters were conducted by SGS. The data review was focused on criteria for the following quality assurance (QA) and quality control (QC) parameters and their overall effects on the data:

- Data validation
- Sample handling (chain of custody)
- Holding time compliance
- Field replicate comparison

Samples were taken from the water flowing from the storm drain outfall to avoid mixing with the stream water. Field analyses met the sensitivities prescribed in the QAP (MOA, 2012).

Field replicate samples were taken at; Ship Creek 550-2, Fish Creek 137-1 and 595-1, Eagle River 1451-1, and Campbell Creek 581-1 and 1488-1 to determine field precision and variability. Results of the field duplicate samples are presented in Table 5. For the field test kits, the QAP requires that percent difference between primary and duplicate samples is calculated. The results need to be within the precision of the equipment used. For the fecal coliform samples analyzed at the laboratory, the QAP requires that relative percent difference (RPD) be calculated between the primary and duplicate samples and be within 60%.

Parameter	QAPP standard	Ship Creek 550-2	Ship Creek 491-1	Fish Creek 37-1	Fish Creek 595-1	Eagle River 1451-1	Campbell Creek 581-1	Campbell Creek 1488-1
рН	± 0.2 pH units	0 pH units	-	-	0 pH units	0 pH units	0 pH units	-
Total Chlorine	30%	0%	-	-	0%	0%	0%	-
Detergents	30%	0%	-	-	0%	0%	20%	-
Total Copper*	30%	0%	-	-	0%	0%	0%	-
Total Phenols	30%	0%	-	-	0%	0%	0%	-
Turbidity	±1 NTU	-	-	4.00 NTU	0.09 NTU	0.05 NTU	-	0.10 NTU
Fecal Coliform	60%	-	26.42%	-	0	200%	58.33%	-

Table 5	. Field	Replicate	Variance	From	Primary	Sample
---------	---------	-----------	----------	------	---------	--------

* The QAP does not define a standard for total copper analyzed with field test kits. Samples were previously analyzed in a laboratory. The precision of the field test kit matches the precision of the other field test kits so 30% was used for the total copper kit.

****Bold** font indicates replicate variance that exceeds the QAP standard.

Most of the results fall within the QAP standards. One QC sampling location did not fall within the range for turbidity. The results of the samples collected at Fish Creek 37-1 (154 and 158 NTU) are in a similar range and it is unlikely that the difference could be discerned with the naked eye. Therefore, the data is not flagged as invalid or suspect. The Eagle River sample at site 1451-1 had a percent difference from the primary to duplicate fecal coliform sample of 200%, but only because one sample was a non-detect and the other resulted in 2 colonies detected. The laboratory test detection limit is 1.64 colonies and anything under that would be marked as a non-detect. Even at two colonies for one sample and zero colonies for another the difference is not great enough to flag this data as invalid or suspect.

The QAP standard for turbidity is based on the precision of the turbidity meter. However, this does not take into consideration the natural variation of turbidity within storm water.. Turbidity varies, to some degree, on a regular basis and more turbid water has the potential to vary more widely as the suspended particles continually move throughout the sample resulting in different readings even when the same sample is retested. As noted in the USGS *National Field Manual* (Anderson, 2005), the USEPA guidelines established in 1990 suggest reporting NTU between 10-40 to the nearest 1 NTU; 40-100 NTU to the nearest 5 NTU and; 100-400 NTU to the nearest 10 NTU. All of the primary and duplicate readings are far below the thresholds for each parameter.

The laboratory performing the fecal coliform analyses, SGS, is certified by the EPA and the Alaska Drinking Water Program and has an approved QA/QC program. Analytical methods and testing procedures were in adherence with the QAP (MOA, 2012), standard methods (APHA, AWWA 2005), and EPA-approved protocols and guidelines.

Sample custody was adequately maintained for the samples. The coolers transporting the fecal coliform samples were held at temperatures of less than 10°C. The holding times were met for all samples.

All results were determined to be valid.

4 Discussion

4.1 Threshold exceedances

The results of the 2014 dry weather screening sampling effort adds to the data set from previous years' sampling efforts (MOA 2008, 2009, 2011, 2012, 2013). Of the eight parameters tested at each of the 15 outfalls sampled, no parameters at any outfall had a threshold exceedance. No follow up action was necessary for any site. Fecal coliform and turbidity have been the parameters that provides the most numerous notable results throughout this permit cycle (exceedances or significantly higher results than other sites).

4.2 Other observations

All of the watersheds identified for dry weather screening had been examined upon the completion of the 2013 field sampling. To complete the 2013 sampling the highest ranked watersheds were revisited. The 2014 sampling effort picked up where the 2013 sampling left off at the top of the priority list. The top four ranked watersheds needed to be visited in order to collect samples at 15 different outfalls.

During the 2014 sampling effort multiple sedimentation basins were examined, but none were selected for sampling. The drainage of sedimentation basins are identified as storm drain outfalls. Sedimentation basins frequently receive water from multiple storm drain sources making them more complicated to sample.

4.3 Damaged and unmapped outfalls

Since the HGDB was last updated, storm drains have been added or relocated in the MS4 network. Some of these outfalls were sampled during the 2014 sampling effort. These outfalls were labeled according to their location within the network and were added to the maps for reporting purposes. Additionally, the GIS mapping effort discovered that there are broken connections and potentially missing nodes in the network within the 2013 version of the HGDB. This will prevent accurate modeling of storm water flow throughout the network.

In addition to discovering unmapped outfalls, the field team made note of a number of outfalls that are in need of maintenance. Table 6 lists the outfalls that HDR found that were new, damaged, clogged or completely submerged. Photos for most of the sites in Table 6 are included in Appendix F.

Watershed	Outfall Number Type of Issue		Notes		
Ship Creek	119-1 Damaged		The end-of-pipe is angled upwards. The pipe has rusted through the bottom about three feet from the end of pipe.		
Ship Creek	46-1	Submerged	This outfall is completely submerged and may not release water efficiently.		
Ship Creek	189-1	Submerged, Damaged	A break in the pipe exists about 4 feet from the end-of- pipe. It is submerged, but visual inspection determined that it was flowing.		
Fish Creek	1310-201 New		This area was under construction during the summer of 2014. It is likely that multiple new outfalls will exist in this area once construction is completed.		
Fish Creek	Fish Creek 584-1		The field team removed a lot of debris, but discovered the end of pipe was crushed and clogged with dirt. Water was trickling out from a break in the pipe.		
Fish Creek	1277-59	Clogged	The outfall was dry and partially clogged with sediment.		
Fish Creek	686-1	Submerged	Outfall completely submerged.		
Fish Creek	391-1	Damaged	End-of-pipe damaged. Partially submerged		
Fish Creek 480-1		New	The outfall location is new, but the HDR field team believes it is 480-1 relocated during construction in the area.		
Fish Creek	137-1	Submerged	Completely submerged.		
Fish Creek	Fish Creek 37-1		This culvert is undersized and clogged with vegetation. Upstream is severely backed up and near flooding creating standing water. This site was sampled.		
Campbell Creek	642-1	Submerged	Nearly completely submerged.		
Campbell Creek	474-1	Damaged	Pipe rusted on bottom.		
Campbell Creek	551-1	Submerged	End-of-pipe completely submerged.		
Campbell Creek	461-16	Clogged	End-of-pipe filled with dirt and dead grass.		
Campbell Creek	447-64	Damaged	End-of-pipe broken and bent over.		
Campbell Creek	Campbell Creek 586-1 Clogged		Heavily clogged. Recent rain blew out clog and debris blocking flow.		

Table 6. New, Damaged, Clogged and Submerged Outfalls

4.4 Future Dry Weather Screening

The QAP should be updated to account for the change in total copper testing. A standard for QC testing of samples run through the total copper field test kit needs to be defined.

All of the identified watersheds have been examined during at least one season of dry weather screening during the current permit cycle. All watersheds have been thoroughly examined.

References

- Anderson, C.W., ed., 2005, Field measurements: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, with sec. 6.0–6.8, accessed [9/24/2013], at http://water.usgs.gov/owq/FieldManual/Chapter6/6.7_contents.html.
- APHA, AWWA. "WPCF (2005) Standard methods for the examination of water and wastewater." Public Health Association, Washington, DC.
- CWP and Pitt, R. 2004. Illicit Discharge Detection and Elimination, A Guidance Manual for Program Development and Technical Assessments. Prepared by the Center for Watershed Protection and Robert Pitt, University of Alabama. October, 2004.
- MOA. 1999. Illicit Discharge Program, Dry Weather Screening Plan. Document No. WMP CPp99001. Municipality of Anchorage, Watershed Management Program. October, 1999.
- MOA. 2013. Illicit Discharge Program Dry Weather Screening: 2013 Project Report. Prepared by HDR Alaska, Inc. and Municipality of Anchorage. October, 2009.
- MOA. 2012. Monitoring, Evaluation, and Quality Assurance Plan, APDES Permit NO. AKS-052558. Prepared for Alaska Department of Environmental Conservation, Division of Water. Prepared by HDR Alaska, Inc. and Municipality of Anchorage. July, 2011.
- NWS. 2014. National Weather Service Forecast Office, Anchorage. http://www.nws.noaa.gov/climate/index.php?wfo=pafc

Appendix A

Watershed Maps

----- Stream

G

Ш

Pipe Routing ► Open Channel Catch Basin 😵 Catchbasin Manhole

Outfall Minor

Manhole
 Manhole

- 🛇 OGS
- Outfall

Campbell Creek Examined and Sampled Outfalls

FSS

Page 1

2014 Examined Outfall ----- Stream 2013 New Node

Ζ

ш

G

ш

- Drainage Ways Continuity Pipe Routing
- -Open Channel Xing Culvert
- Drainage Way Nodes Catch Basin
- 😌 Catchbasin Manhole Control Outlet Manhole
 Manhole

🔊 ogs

- Outfall Major Outfall Minor 🛛 Weir

0

Dry Weather Screening 2014 Campbell Creek Examined and Sampled Outfalls Page 2

\bigcirc	OGS
\bigcirc	Outfall

2014 Examined Outfall

----- Stream

G

ш

Drainage Ways Pipe ► Routing ► Open Channel

Drainage Way Nodes Catch Basin

- Outfall Major
- Outlet 😌 Catchbasin Manhole
- Control Outlet
- Manhole
 Manhole
- 🔊 ogs

Dry Weather Screening 2014 Campbell Creek Examined and Sampled Outfalls

Page 4 Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/15/2014

FX

----- Stream

E G

Pipe ► Inlet ► Routing

- Control Outlet
- Manhole
 Manhole
- 🔊 ogs
- Outfall Minor

Campbell Creek Examined and Sampled Outfalls Page 5

2014 Examined Outfall

----- Stream

E G

- Drainage Ways Pipe Inlet
 - Routing
 - -Open Channel
 - Xing Culvert
- Outfall Outlet

🔊 ogs

Catch Basin

Drainage Way Nodes

😌 Catchbasin Manhole

200 Feet 100 0

Dry Weather Screening 2014 Campbell Creek Examined and Sampled Outfalls Page 6

Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/15/2014

FX

2014 Examined Outfall

----- Stream

Е С

Drainage Ways
Continuity
► Pipe
Routing
► Open Channe
Xing Culvert

Drainage Way Nodes					
Bypass Outlet	Outfall Major				
Catch Basin	Outfall Minor				

Outfall Minor

Outlet

```
🛇 ogs
```

Outfall

Manhole
 Manhole

200 Feet

100

0

Dry Weather Screening 2014 Campbell Creek Examined and Sampled Outfalls Page 7

----- Stream

LEG

Pipe Routing ► Open Channel ► Xing Culvert

😌 Catchbasin Manhole Curb Inlet

Outfall

Outlet

Campbell Creek Examined and Sampled Outfalls Page 8

Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/15/2014

FX

2014 Examined Outfall

----- Stream

G

ш

Drainage Ways Pipe ► Routing ► Open Channel Xing Culvert

Drainage Way Nodes

- 😵 Catchbasin Manhole
- Manhole
 Manhole
- Outfall
- Outfall Major

Dry Weather Screening 2014 Eagle River / Meadow Creek Examined and Sampled Outfalls Page 1

2014 Sampled Outfall 2014 New Node

----- Stream

Drainage Ways Pipe ► Open Channel

Drainage Way Nodes Catch Basin 😌 Catchbasin Manhole Manhole

🛇 OGS

Outfall

200 Feet

100

Dry Weather Screening 2014 Eagle River / Meadow Creek Examined and Sampled Outfalls Page 2

2014 Examined Outfall

----- Stream

LEGEND

Drainage Ways Pipe Open Channel Xing Culvert

" 😵 Catc

```
Outfall
```


Dry Weather Screening 2014 **Eagle River / Meadow Creek** Examined and Sampled Outfalls **Page 3**

2014 Examined Outfall

----- Stream

Drainage Ways			
Pipe			
Open Channel			
Xing Culvert			

Outfall

100

0

Dry Weather Screening 2014 Eagle River / Meadow Creek Examined and Sampled Outfalls Page 4

2014 Examined Outfall 2014 New Node

----- Stream

Ζ

ш

Б Е

Drainage Ways Pipe Routing

Drainage Way Nodes Catch Basin 😌 Catchbasin Manhole Manhole
 Manhole

Outfall

200 Feet 100

Dry Weather Screening 2014 Eagle River / Meadow Creek Examined and Sampled Outfalls Page 5

2014 Sampled Outfall 0

----- Stream

Z Ш

5 Ш

Drainage Ways		
►Pipe		
► Inlet		
Routing		
Open Channel		

Dry Weather Screening 2014 Eagle River / Meadow Creek Examined and Sampled Outfalls Page 6

2014 Examined Outfall 2014 Sampled Outfall ----- Stream

Z Ш

LEG

Drainage Ways Pipe ► Inlet Routing

Xing Culvert

Drainage Way Nodes Blind Connect

Outfall Minor

Catch Basin

😵 Catchbasin Manhole

Manhole
 Manhole

Outfall

Dry Weather Screening 2014 Fish Creek Examined and Sampled Outfalls Page 1

----- Stream

Drainage Ways	
Pipe	
Routing	
	- 1

Open Channel Xing Culvert

Ocatchbasin Manhole Manhole
 Manhole

Catch Basin

Drainage Way Nodes

🛇 OGS Outfall Minor 100 200 Feet

0

Dry Weather Screening 2014 Fish Creek Examined and Sampled Outfalls Page 2

2014 Examined Outfall 2014 Sampled Outfall ----- Stream

Ζ

ш

Э Ш

Drainage Ways Continuity Pipe ► Inlet

► Open Channel

Drainage Way Nodes Catch Basin

- Outfall Minor
- Outlet 😵 Catchbasin Manhole
- Control Outlet
- 🔊 ogs
- Outfall

200 Feet

100

Dry Weather Screening 2014 Fish Creek Examined and Sampled Outfalls Page 4

Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/10/2014

FX

	Inlet
	Routing

\bigoplus	Manhole
T	wannole

Outfall Minor

Outfall

Examined and Sampled Outfalls

FX

Page 5

2014 Sampled Outfall

----- Stream

LEG

Drainage Ways Pipe Routing

Drainage Way Nodes Catch Basin

Outfall Minor

😌 Catchbasin Manhole

- Manhole
 Manhole
- 🛇 OGS
- Outfall

200 Feet

100

0

Dry Weather Screening 2014 Fish Creek Examined and Sampled Outfalls Page 6

----- Stream

Δ

л П

G

ш

Drainage Ways Pipe Xing Culvert

Drainage Way Nodes Catch Basin 😌 Catchbasin Manhole Manhole Manhole

- 🛇 OGS
- Outfall Major

200 Feet

100

0

Dry Weather Screening 2014 Fish Creek Examined and Sampled Outfalls Page 7

~~~ Stream

G

ш

Drainage Ways Continuity Pipe Routing -Open Channel Xing Culvert

Bypass Outlet Catch Basin

Drainage Way Nodes

😌 Catchbasin Manhole

Outfall

Outlet

- Manhole
 Manhole
- 🔊 ogs

0

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 1

1 100	
	ina
	ung
Xing	Culvert

Manhole
 Manhole

🛇 OGS

Outfall

Examined and Sampled Outfalls Page 2

----- Stream

LEG

Pipe Routing ► Open Channel Xing Culvert

Catch Basin Outfall

😌 Catchbasin Manhole

- Clean-out
- Manhole
 Manhole

Little Campbell Creek Examined and Sampled Outfalls Page 3

Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/10/2014

FX

~~~ Stream

G

- Drainage Ways Continuity Pipe ► Routing -Open Channel
- Xing Culvert

Drainage Way Nodes

- Bypass Outlet
- 🛛 Weir E Catch Basin

Outfall

- 😵 Catchbasin Manhole
- Manhole
 Manhole
- 🔊 ogs

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 4

FX

~~~ Stream

Е С

- Drainage Ways Pipe Routing ► Open Channel
 - Xing Culvert

Drainage Way Nodes Blind Connect

Outfall

Catch Basin

- 😵 Catchbasin Manhole
- Manhole
 Manhole
- 🔊 ogs

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 5

2014 Examined Outfall 2014 Sampled Outfall ----- Stream

Drainage Ways Continuity Pipe

Routing

► Open Channel

Drainage Way Nodes

- Bypass Outlet Outfall Minor
- Catch Basin
- Manhole
 Manhole
- 🔊 ogs
- Outfall

200 Feet

100

0

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 6

----- Stream

G

ш

Drainage Ways Pipe -Open Channel

Xing Culvert

Drainage Way Nodes

- 😵 Catchbasin Manhole
- Manhole
 Manhole
- 🖻 ogs
- Outfall

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 8

----- Stream

G

ш

Routing ► Open Channel

Xing Culvert

annage may neede		
Catch Basin	0	Οι
Catchbasin Manhole		
Manhole		

🛇 OGS

Outfall

 \bigotimes

 \bigoplus

Little Campbell Creek Examined and Sampled Outfalls Page 9

----- Stream

Drainage Ways Pipe Routing

► Open Channel Xing Culvert

Catch Basin Control Outlet

End of Pipe (EOP)

Drainage Way Nodes

Outfall

- Manhole
 Manhole
- 🔊 ogs

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 10

~~~ Stream

Drainage Ways Continuity Pipe ► Inlet Routing ► Open Channel

► Xing Culvert

Drainage Way Nodes Catch Basin 😵 Catchbasin Manhole Manhole Manhole

- 🔊 ogs
- Outfall

200 Feet

100

0

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 12

----- Stream

Е С

Drainage Ways Pipe Routing ► Open Channel Xing Culvert

Drainage Way Nodes Catch Basin

 Manhole
 Outfall

200 Feet

100

0

Dry Weather Screening 2014 Little Campbell Creek Examined and Sampled Outfalls Page 13

• Outfall Major

Outfall Minor

2014 Examined Outfall 2014 Sampled Outfall ----- Stream

5 Ш

Drainage Ways Continuity

Pipe ► Routing

-Open Channel Xing Culvert

- 🔊 ogs Outfall

Manhole
 Manhole

Catch Basin

Drainage Way Nodes

😵 Catchbasin Manhole

100

Dry Weather Screening 2014 Ship Creek Examined and Sampled Outfalls

Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/10/2014

Page 2

2014 Sampled Outfall

----- Stream

С Ш

- Drainage Ways Continuity Pipe ► Inlet Routing
 - ► Open Channel
 - ► Xing Culvert

Drainage Way Nodes Catch Basin

Outfall Major

- 😌 Catchbasin Manhole
- Manhole
 Manhole
- 🔊 ogs
- Outfall

200 Feet

100

0

Dry Weather Screening 2014 Ship Creek Examined and Sampled Outfalls

Source: MOA HGDB Imagery: MOA Pictometry 2009 HDR Alaska, Inc. 10/10/2014

Page 3

😵 Catchbasin Manhole

Manhole
 Manhole

Outfall

► Open Channel

-----Xing Culvert

Е С

Ship Creek

Examined and Sampled Outfalls

FX

Page 4

----- Stream

G

ш

Drainage Ways Routing Xing Culvert

Drainage Way Nodes Outfall Major

Dry Weather Screening 2014 Ship Creek Examined and Sampled Outfalls Page 5

Appendix B

Field Notebook

2 (0/12 SHIP CREEK C MEYN ISAAC WATKINS DWS RECON SHIP CREEK 1.1 (436-1): good but flowing at slow trickle, 2 ft colvert hole in fonce. The second second is the Park at Ulu Factory 189-1: Completely submerged, pipe cut (550-2): good, sample at lowest tide possible 4 ft up. End of size crushed with hole. Noticeable milky plume flowing out 2 ft where Park at Ulu Factory A77-1: Could not locate; possible culvert designated as outfall 119 - 1: poor condition. Jacked up significantly, 728-1: Drawn open channel through goif rust holes to ft in from end of prpe. course. Tributary? Water Flowing from holes in pipe 46 - 1° Completely submerged; 3-4 ft concrete 690-1: Water pipe over creek? out fall; just upstream of sportfishing wire line FOR BOTH ABOVE Parking at natchery, outfalls on opposite side of creek 151-3: Outlet of pond into creek=NOT a pipe (491-1). pipe at bike path edge Not at Creek edge. Access before bench. Good. (213 -1) good, Flowing An alla Access behind Allied building WALK between Allied 3 Emerald AK building E. Rite in the Rain . turn left zwalk in front of fence to 13. 31-5-

FISH CREEK 241 and 1303-1: Could not locate. Found Manhole in marsh

(595-1)= Good. Walk along bike path to orange/yellow striped guy lines to left of trail. Fonow fence out to creek Ift wide pipe, End of pipe has red marking post stroking up 9".

1310-201: Under construction (entire area) Outpall & netwirk needs + be updated

584-1: End of pipe completely covered with logist debris; water was flowing but unable to access end of pipe. 6/16/14

594-1: Cleared off debris. Pipe crushed ? twisted. Water in outfall channel not coming from outfall pipe. Open end of pipe clogged with dirt.

1277-59: Dryz clogged with sediment 312-19 "Trickling water. Alternate Pink flagging in tree directly above outfall. Be careful of footing as norsetails obstruct view of -ground, Unlabeled by pass outlet - lined out notes good 391-1' Standing water, no flow out of PEPE. 3ft wide pipe 145 the submeget 686-1: 2 It pipe. Completely submerged NOTE: 391-1; 686-1 are 10 ft apart 391-1: Standing Water, Overground pipe 2 ft to the right coming from parking tot. End of pipe damaged 1276-2: Could not locate (308-20)]: Flowing; 3 ft pipe 309-197= Standing water 100 m Rite in the Rain Castal C

LAKE OTIS 3 TUDOR See below Unnamed 480-1: coold not locare out all, Potennally relocated during construction Frickle of water. Tudor Rd west of Lake Otis on south side of road, The states next to culver crossing. Alternate 137-1: Completely abmerged. Standing water! Pipe coming out of concrete . Enang. Orange carsonite marker on top. 480-1: Alternate prains at elbow of creek. Looks like standing water THE REAL PROPERTY. 1003-1' Dripping, Use as alternate, End of pipe at edge of parking lot. Righter Ling t Plastic pipe Principality 1013-1: Dry The ser and a start with 234-1: Could not locate. Possibly buried under railroad gravel and/or dead vegetanon. 37- No from, standing vialer Flowing The pipe. Culvert is undersided 3 upstream of when is backed up 3 strangulant

9

Rite in the Rain

ALSO ANTAL

CMEYN AGERLEK DWS RECON	9
(A)	1377-1: Open channel diminione to creek;
ER + Flawing 6 in. when in pipe. Ift puc	not pipe outtall
Photo 2104 Pipe	
2105 Downstream	1370-1: Stream routed through where;
Blue Marker	rot outfail
ER 4' Backed up with standing water; slight	(646-71) Flowing 2 ft pipe
water flow. Alternate?	ZI72 outfaul
2166: Outlett	2173 outful into creek
2167: Downstream	
Left hand side of trail when coming frim	Unnamed outfall flowing into creek from
Mt Point Circle	North side. 1 Ft metal pipe
BOTH ABOVE: Access from utility corridor/trail on	2174, 2175
Mountain point Circle	(400-1: Dry. 2ft metal pipe
	2176 2177
(1417-1): Flowing. Ift PVC pipe. A in water in pipe	
Access between Eagle Place houses	643-1: Open channel drainage; not pipe
tothe side of	outfall
Addresses 19920 ; 19862	
	1376-11 Over channel drainage, not pipe
(1451-) Flowing. 2tt PVC pipe. lin. worked in	outfull
pipe	
ZITU OUTENU	
2171 down strem	
Access from Riverside Drive, cornel of	
g-aidvail	Rite in the Rain.

.

10 CAMPBELL CREEK	11
	(488- P. Flowing, 5 ft metal. Ift water
CAM 685-1: Sligning wet, possibly not	in pipe. Lots of track
enough to sample. Access on E side of crack	2194 offall
2179 - Erid of pipe	2187 downstream
21.79 - Downstream + 100	Park in Las Margentas lot, access via
	arovel road post gase
[042-1' Standing Water. Pipe almost entirely	
Submerged. Just in Front of Storm	1477-1: Un accessable
manhole	
2130-EOP	(5+6-) Flowing. 3 It netal pipe - bincher
2100 - Standing water do who man	erroter in pipe
and the second	2159 outfaur
556-2-1: Trickle of water	2190 downstream
the second s	Park at Take Campbell Park on 76m off of Kingsi
500-1-1: Could not locate	
	583-1: Could not locate
297-1' Slightly Planing, almost standing	
Wales, Orange marked	(11=1)" Flowing. 2 ft plastic pipe. Inch water
0	in pro-
(581-1) Flowing	, zigt-outlet
2 & PVC pipe	2192 down
2184 Outfan 00.50	Access from Huntsmen Circle
2185 - Flow out	
	A second of the second s
	and the state of the second of the state of the second of
	Rite in the Rain.

12
100-1: Flowing A ft metal pipe. 3 inches
water in pipe.
Second out fall tricking. 21+ plastic
pipe croser to houses.
2193-Big outtal
2194 Smaller and and the strange
as Bon
96 Downsteam
305-1° In accessible
ALC IST AND A CLESS fum
460-1. Incluy. 2tt plastic pipe. pearle brie trail
ZIND downstream
1454-2
474-4: Flowing. 4 Ft metal pine
2199 outtan
2200 downstream in the and the
474-1' No flow, Pipe rusted on bottom
the second s
569-1: Inaccessable

13 280-1: 271-1: Bruked up with creek water, not proving 271-1: Flowing. 2ft metal pipe. 2 inches water in pipe. Park in Arctic Roadronner Lot ; wilk down drive to yellow posts 2201-outfall 2202 - downstream NIEK Little CAMPBell 496-1) good flow - Across street from active construction right At the end of const. avea. 10' off the road. Can park right next to epouteall, 18407 - multiple ends-of-pipe 18-107AOne @ manhole near Snow View Pr 18-1078 One directly across from medellin Cr. 18-1090 pre emptying into small pond through OGS which is marked as Manholp on MAP - Flowing - Grood to test - 11-22 D D DC Rite in the Rate. CAN Pull off @ OGS.
325-2, 161-1, 203-1 3 237-1 All are ends of open diainage ditches. 475-1 Slightly Flowing, could be used as alternate, 364-1 - very low flow - standing H20 Ste7-7: Paypass outlet. Standing water WI thick algae in cuttal channel could sample As Alternate 567-1: Outlet of sed basin. Cannot access 285-15 standing Ho0-no flow the Talet so will not sample piles of grass cullings in ditch 1-1- X-ing where - EOP is by pass outlet, Cannot access inlet so will not sample 285-2 standing 1120 - no flow + Lick Algae = mosquito bierding 243-24 Dry 551-1 EOP @ end yellow line on map Strong flow, but EOP completely 1019-2° Access through private property-EGT not streamside Light froming water in channel. Use as alternate. Atcess off of E 28 m Submerged. Stick in center of Photo Coming out of EOP 3:03-1: Cannot locate. EOP. possidy filled - good Alternate b/c All water is from gipe le 5-2° Cannot access; loose dogs 598-18 = Dry 461-16 @ EOP Filled w/dirt and derd gray 5908-1" Cannor access 501-4 = Dry 320-5: Cannot access. Private property Rite in the Rain . in the second second

16	17
149-2: Could not find out Call potentially	manhole over in road ('z way down slope
Tabered Wivert. Wivert perchad 2 tt.	of road)
692-15: Outlet of 3 separate EOPs	155-3: Corld not access, private property
that drain into sed basins	
	1014-41: Dry
692-24 Flowing Slowing	
, , , , , , , , , , , , , , , , , , ,	424-3' No. access: Short pipe network
62-1: Standing Water	
	le 12-13 427-2: No access. Short network
692-15 (B: Slightly flowing, Marked	15
by orange marker	-1056 - 117: Flowing. Access difficult
Q: FLOWING. This pipedrains	due to closed foot bridges. Access via trial
largest pertion of network	by red house on E side of sed basins
(C)= Two out falls. Metal pipe over	1056-8 (D: Flowing. By backyard it
grown with vegetation. Plashi pipe frowing	big red house
	B. Partially Submerged. Not froming
477-64. Flowing well but EOP brokens	
bent over; unable to access	NOTE: Access to 1056-117 51056 -8 - Park
A CONTRACTOR AND A CONT	at cornel of Carriage
317-1: Connects to stream under road	
	14Lel-13 Not froming
Sole-1" EDR heavily dogged. Recent Form	
event blew out debus. Standing waser	290-46: 3 wood latch marking EOP
in pipe. Directly in line w/ 2 grades 3	
	446-1: Slightly flowing. Alternate the hain.

.

18 19 Pry Weathor Screening SAmpling 7-16-14 Ship Cr. 436-1 Very Slow Steady stream of Water: Pipe outfail above ordinary high tide. 550-2 12:53 Steady flow - likely discharging tide water from recent hightide. Pipe outfill well below and indry high tide mark. Recon notes indicate good flow Even during lowest point in tide. 213-1 1440 good flow A LOT of Beaver Activity All large trees cut down = A lot of dead Call remaining 491-1 1455 good flow, outfall channel w/ heavy sedimentation = backs up flow into end of pipe. Rite in the Rain.

21 7-17-14 Figh Cr. 16 July 2014 Meter #2 595-1 - 1720 steady trickle Standards Sett Z CASING to find AS House tailing dieing back. 0.05 NTU empty meter n' water D. BUTV 0-21 NTU affer silion Turb. CAL. Standard Reading Rona Empty = 0.05 4.96 0 6-10 5.65 P.I. H20=0.07 0-100 57.2 57.8 Standard Reading 527 4.99 0-1000 523 19-18 5.05 0-100 57,2 57.2 0-1000 523 523 388-201 Drains into sed. Basin, Hed BAGin overrun of iron CloculAtion, Out EAll up debrie, surface sum Dily sheen, ison floc 37-1 Very low Clow near headender of A Wanch of Fish creek, Very clogged wiveg, dirt etc. Tives in channel just Vist. La creek culvert clogged 3 creek backed up ist. of crossing = standing 11 0. Samples run @ SAme time ag 388-201 Rite in the Rain.

FACIE RINER	- 110 ous streening con	op dent Oredr
LINGLE FILEN	Egi-lican did. C. Icu	
541-1: Dua	1499-1: Sampler Soasy	
R A: Standih, Water	4910-1: Sampled.	
141 zui San plad	1256-117: Sameled	2.1
1451-1: Sampled		
646-71 Sameled		
Turbidimeter Callbranion: Meter #2		
Empty Meter = 0.06 NTUS		
DI Water Reading = O. OLO NTUS		
Standard Reading		and the second second
0-10 5.05 5.09		
0-100 57.2 56.5		to a third share pro-
0.1000 523 524		
	264	· · · · · · · · · · · · · · · · · · ·
	<i>k</i>	
1 - Kunner & Marine Marine Marine Marine		· · · ·
China and a state of the state		
and the second s		15 16
The same the second		Action to the second
		Rite in the Rai

Appendix C

Field Data Sheets

Anchorage	DRY WEATH	ER SCREENING ATA FORM	Department of Public Works	KATERSHED MANAGEMENT
Outfall Number: <u>430-1</u>				×
Part 1. General Information		ni ana ana aona ao amin'ny tanàna amin'ny taona 2008–2014. Ilay kaominina dia kaominina dia kaominina dia kaomi N		
1. Date 16 July 2014	Time 1	2:30		
2. Field Crew T. WORKMS, A. (-	xruk	_ Water quality analyses c	ponducted by: $\underline{T}_{k} \mathcal{U}_{k}$	1-6
3. How long since last rainfall? □ raining r	now 🗆 less tha	n 3 days 🕅 🕅 3 or mo	ore days 🛛 unk	nown
4. Size of last rain event inches (Attach data from Anch	orage International Airport or G	irdwood. Websites provid	ed on back of form.)
5. End-of-pipe diameter: fee	et <u>6</u>	inches		
6. Depth of water in end-of-pipe:fe	eet <u>< \</u> inche	S		
Part 2. Visual Observations				
7. Photograph Log: Camera # and frame number	(s) camborth	035 102-2262	-, 102-2263	
8. Water flowing from end-of-pipe?	DX Yes			``
If NO, take and log photograph of outfall, reco. 9 Odors: IX No	rd any pertinent inform □ Yes	nation in comments, and go to n If yes, describe in comme	ext outfall. ht section	If YES, continue.
10. Floatables in water flowing from end-of-pipe:	I None □ Movina oil	v sheen □ Surface scum □ S	papy suds □ Debris □] Other
11. Vegetation: Some about in Lottim of	PVPC 12. Structu	ral Condition: ADOC		
13. Biology		<u>(</u>		
Part 3. Field Analyses				
14. Flow: gal/min; OR	0.5L/9 min			
Ja Low: Not intense, water moving very slowly	Medium: Water m	oving at a moderate rate	□ High; Intense water	moving very quickly
15. Appearance of water flowing from end-of-pipe:	🖾 Clear	Cloudy/Muddy		
16. Color of water flowing from end-of-pipe:	🛱 Clear	Colored		
17. Water Quality Analyses:				

Quality Control Samples			
Parameter	Equipment Blank [1 each before sampling event]		Duplicate Sample [1 each sampling event]
pН	N/A		pH units
Total chlorine	< 0.5	ppm	ppm
Detergents	<0.05	ppm	ppm
Total copper	20,05	ppm	ppm
Total phenols	<0.1	ppm	ppm
*Turbidity (outfall)	0,18		
*Turbidity (upstream)	N/A		
Fecal Coliform	<u>v</u> .		

Water Quality Samples		
Parameter	Primary Sample	
pН	7.32 pH units	
Total chlorine	<0,5 ppm	
Detergents	<i><0,05</i> ppm	
Total copper	えい.05 ppm	
Total phenols	<i><0.</i> / ppm	
*Turbidity (outfall)	1.50 MTV	
*Turbidity	NIA	
(upstream)	N IN	
Fecal Coliform		

Part 4. Comments: Sam ple bottle #1 very low flow

iron opphation stars on rock below orthall

Anchorage	SCREENING FORM
Outfall Number: 550-2	
Part 1. General Information	
1. Date 16 July 2014 Time 12:5	0
2. Field Crew I. WORKINS, A. Gerlek	Nater quality analyses conducted by: $\underline{T.W.}, \underline{A.G.}$
3. How long since last rainfall?	s 🖾 3 or more days 🗆 unknown
4. Size of last rain event inches (Attach data from Anchorage	nternational Airport or Girdwood. Websites provided on back of form.) \sim
5. End-of-pipe diameter: feet inche	· S
6. Depth of water in end-of-pipe:feetfeet	
Part 2. Visual Observations	
7. Photograph Log: Camera # and frame number (s) CUMPER #03	5 102 - 2264, 102 - 2265
 8. Water flowing from end-of-pipe? □ No ☑ Yes If NO, take and log photograph of outfall, record any pertinent information in 9. Odors: ☑ No □ Yes If 	a comments, and go to next outfall. If YES, continue. yes, describe in comment section.
10. Floatables in water flowing from end-of-pipe: 🖾 None 🛛 Moving oily shee	n 🗆 Surface scum 🗆 Soapy suds 🗖 Debris 🛛 🗆 Other
11. Vegetation: 12. Structural Cor 13. Biology	idition: <u>300 d</u>
Part 3. Field Analyses	
14. Flow: gal/min; OR	
Low: Not intense, water moving very slowly Medium: Water moving a	t a moderate rate
15. Appearance of water flowing from end-of-pipe: 🕵 Clear	pudy/Muddy
16. Color of water flowing from end-of-pipe: 🙀 Clear 🗆 Co	lored
17. Water Quality Analyses:	

Quality Control Samples				
Parameter	Equipment Blank [1 each before sampling event]		Duplicate [1 each sam	e Sample pling event]
рН	N/A		7.26	pH units
Total chlorine	P JAY	pm	20.5	ppm
Detergents	р	pm	20.0	5 ppm
Total copper	~(0.05 p	pm	ζ_{0}	5 ppm
Total phenols	р	pm	40,1	ppm
*Turbidity (outfall)				
*Turbidity (upstream)	N/A			
Fecal Coliform				

Water Quality Samples		
Parameter	Primary Sample	
pН	7,30 pH units	
Total chlorine	く0.5 ppm	
Detergents	<i>40.05</i> ppm	
Total copper	<0.05 ppm	
Total phenols	<i>く0.1</i> ppm	
*Turbidity (outfall)	20.1 MTV	
*Turbidity	NIKA	
(upstream)	· IVIA	
Fecal Coliform		

Part 4. Comments: ficle 400 Migh to Measure flow sample bottle #2

DRY WEATHER SCREENING FIELD DATA FORM	T
Outfall Number: 213-1	IDIALDIAT
Part 1. General Information	
1. Date 16 July 2014 Time 14:40	
2. Field Crew I. Wattkins, A. Gerele Water quality analyses conducted by: J.W., A.G.	
3. How long since last rainfall? 🛛 raining now 🖓 less than 3 days 🖾 3 or more days 🖓 unknown	
4. Size of last rain event inches (Attach data from Anchorage International Airport or Girdwood. Websites provided on back of f	orm.)
5. End-of-pipe diameter:2 feetinches	
6. Depth of water in end-of-pipe:feetfeet	
Part 2. Visual Observations	
7. Photograph Log: Camera # and frame number (s) (amera # 035 , 102 - 2200 , 102 - 2208	
 8. Water flowing from end-of-pipe? □ No ⊠ Yes If NO, take and log photograph of outfall, record any pertinent information in comments, and go to next outfall. If YES, contin 9. Odors: ☑ No □ Yes If yes, describe in comment section. 	ue.
10. Floatables in water flowing from end-of-pipe: 🖄 None 🛛 Moving oily sheen 🗆 Surface scum 🗆 Soapy suds 🖾 Debris 👘 🗋 Other	
11. Vegetation: algal 13. Biology baby fish in dafail channel condition: good, covered w/ wody debres (Leaver game	<u>s</u>
Part 3. Field Analyses	
14. Flow: gal/min; OR	
🗆 Low: Not intense, water moving very slowly 👘 🖾 Medium: Water moving at a moderate rate 👘 🖾 High; Intense water moving very qu	lickly
15. Appearance of water flowing from end-of-pipe: 🛱 Clear 🛛 Cloudy/Muddy	
16. Color of water flowing from end-of-pipe:	
17. Water Quality Analyses:	
Quality Control Samples Water Quality Samples	
Parameter Equipment Blank Duplicate Sample Parameter Primary Sample [1 each before sampling event] [1 each sampling event] Parameter Primary Sample	

Parameter	Equipment Blank [1 each before sampling event]	Duplicate Sample [1 each sampling event]
рН	N/A	pH units
Total chlorine	ppm	ppm
Detergents	ppm	ppm
Total copper	ppm	ppm
Total phenols	ppm	ppm
*Turbidity (outfall)		
*Turbidity (upstream)	N/A	
Fecal Coliform		

Water Quality Samples		
Parameter	Primary Sample	
pН	6.88 pH units	
Total chlorine	<0.5 ppm	
Detergents	20.05 ppm	
Total copper	20.05 ppm	
Total phenols	CO.1 ppm	
*Turbidity (outfall)	1.36 NTU	
*Turbidity	NIA	
(upstream)	/N/IT	
Fecal Coliform	Y	

Part 4. Comments:

Lots of dead fallen cottonwood from beaver activity no standing tall trees in orea oxidation in orthall phonked. sample bottlet sample bottle #1

Anshorage Department of Public Works
Outfall Number: 401
Part 1. General Information
1. Date <u>10 July 2010</u> Time <u>101, 55</u>
2. Field Crew <u>T. WWFKM</u> , <u>A. GRAUK</u> Water quality analyses conducted by:
3. How long since last rainfall? 🛛 raining now 🖓 less than 3 days 🕅 3 or more days 🗖 unknown
4. Size of last rain event inches (Attach data from Anchorage International Airport or Girdwood. Websites provided on back of form.)
5. End-of-pipe diameter: feet inches
6. Depth of water in end-of-pipe:feetfeetinches
Part 2. Visual Observations
7. Photograph Log: Camera # and frame number (s) $(amera + 035, 102 - 7764, 102 - 7270)$
8. Water flowing from end-of-pipe? No Yes
If NO, take and log photograph of outfall, record any pertinent information in comments, and go to next outfall. If YES, continue.
10. Eleatables in water flowing from end-of-nine: ⊠None. □ Moving oily sheen □ Surface soum □ Soany suds. □ Dobris. □ Other
11. Vagatation: differ to the characteristic and the characteristic
13. Biology
Part 3. Field Analyses
14. Flow: gal/min; OR
🗆 Low: Not intense, water moving very slowly 🛛 🖾 Medium: Water moving at a moderate rate 🔅 🗆 High; Intense water moving very quickly
15. Appearance of water flowing from end-of-pipe: 🖾 Clear 🛛 Cloudy/Muddy
16. Color of water flowing from end-of-pipe:
17. Water Quality Analyses:
Quality Control Samples Water Quality Samples

		Quality Control Samples		Water Quality Samples		
	Parameter	Equipment Blank [1 each before sampling event]	Duplicate Sample [1 each sampling event]		Parameter	Primary Sam
	pН	N/A	pH units		pН	6.83 pH ι
	Total chlorine	ppm	ppm		Total chlorine	50.5
	Detergents	ppm	ppm		Detergents	60.05
	Total copper	ppm	ppm		Total copper	< 0.05
	Total phenols	ppm	ppm		Total phenols	(0.1
	*Turbidity (outfall)				*Turbidity (outfall)	3.57N
	*Turbidity (upstream)	N/A			*Turbidity (upstream)	N/A
	Fecal Coliform		У		Fecal Coliform	Y
iomm Al V	ents: Blist Silv VAMPEL CE	ltation in sut fall suld be cleare	channel ar	e l	acking up	flow-

Water Quality Samples							
Parameter	Primary Sample						
pН	€.83 pH units						
Total chlorine	く0.5 ppm						
Detergents	<i>₹0.05</i> ppm						
Total copper	<0.05 ppm						
Total phenols	<0.∖ ppm						
*Turbidity (outfall)	3.57NTU						
*Turbidity	VA						
(upstream)	r / r]						
Fecal Coliform	Y						

Part 4. Comments:

Sample bottle #2

DRY WEATHER SCREENING FIELD DATA FORM	IGEMENT
Outfall Number: <u>773-1</u>	
Part 1. General Information	
1. Date <u>7-17-14</u> Time <u>142-0</u>	
2. Field Crew I. Watkins Water quality analyses conducted by: I. Watkins	
3. How long since last rainfall?	
4. Size of last rain event inches (Attach data from Anchorage International Airport or Girdwood. Websites provided on back of	form.)
5. End-of-pipe diameter:feetinches	-
6. Depth of water in end-of-pipe:feetinches	
Part 2. Visual Observations	
7. Photograph Log: Camera # and frame number (s)	
 8. Water flowing from end-of-pipe? □ No ♀ Yes If NO, take and log photograph of outfall, record any pertinent information in comments, and go to next outfall. If YES, contine 9. Odors: ♀ ♀ No □ Yes If yes, describe in comment section. 	nue.
/ 10. Floatables in water flowing from end-of-pipe: □ None □ Moving oily sheen □ Surface scum □ Soapy suds 囟Debris □ Other	
11. Vegetation: <u>Horse tail</u> 12. Structural Condition: <u>good</u> 13. Biology <u>none</u>	
Part 3. Field Analyses	
14. Flow: gal/min; OR / lites/minute	
K Low: Not intense, water moving very slowly I Medium: Water moving at a moderate rate I High; Intense water moving very c	uickly
15. Appearance of water flowing from end-of-pipe: 🙀 Clear 🛛 🗆 Cloudy/Muddy	
16. Color of water flowing from end-of-pipe: \Box Clear \blacksquare Colored <u>light tan</u>	
17. Water Quality Analyses:	
Quality Control Samples Water Quality Samples	
Parameter Equipment Blank Duplicate Sample Parameter Primary Sample [1 each before sampling event] [1 each sampling event] [1 each sampling event] Parameter Primary Sample	
pH N/A 6.93 pH units pH 6.93 pH units	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Total copper < 0,05 ppm < 0,05 ppm Total copper < 0,05 ppm	
Iotal pnenois ppm Iotal pnenois *Turbidity <	
(outfall) 0.07 5.37 (outfall) 5.46	
*TurbidityN/A*Turbidity(upstream)N/A(upstream)	
Fecal Coliform V/A Fecal Coliform	

NIA

Part 4. Comments:

Anchorage			WE Fiel	ATHER SCRE .D DATA FOF	ENIN RM	IG	epartment of Public Works	WATERSHED MANAGEMENT
Outfall Number:	388-20	21	-		~			
Part 1. General Info	ormation							
1. Date	-17-14	Tim	е	1515	_			
2. Field Crew Z	WATKIN	5		Water qu	ality ana	lyses conducted l	y: <u>I.l.</u>	itleins
3. How long since la	st rainfall?	\Box raining now		ess than 3 days	,KI	3 or more days	🗆 unkn	own
4. Size of last rain ev	ent. <u><!--</u--></u>	inches (Attach c	data fror	n Anchorage Internatio	onal Airp	ort or Girdwood.	Websites provided	d on back of form.)
5. End-of-pipe diame	eter:	3 feet	0) inches			,	,
 Depth of water in e 	end-of-pipe:		0	_inches				
Part 2. Visual Obse	rvations							
7. Photograph Log: (Camera # and fra	ame number (s)						
8. Water flowing from	n end-of-pipe?	🗆 No	ŻΥ	Yes				
If NO, take and k	og photograph of	^f outfall, record any p	ertinent	t information in comme	ents, and	go to next outfall.	I	f YES, continue.
9. Odors:		/凶 No	ΠY	'es If yes, des	cribe in (comment section.		
10. Floatables in wate	er flowing from e	nd-of-pipe: 🗆 None	🕅 Mo	ving oily sheen 🗹 Suri	face scu	m 🗆 Soapy suds	🗴 Debris 🛛 🖾	Other
11. Vegetation:	ant 1/4	141	12.	Structural Condition: _	5000	L		
13. Biology	how	-						
Part 3. Field Analys	es							
14. Flow: 9	gal/min;	OR						
Low: Not intense, w	vater moving ver	y slowly 🖉 Mec	dium: W	ater moving at a mode	erate rate	e 🗆 High	n; Intense water m	oving very quickly
15. Appearance of wat	ter flowing from e	ənd-of-pipe: 🔀 Clea	ar	Cloudy/Mu	ddy			
16. Color of water flow	ing from end-of-	pipe: 🗆 Clea	ar	Colored	lia	St tan		
17. Water Quality Anal	lyses:				\sim			
	-	Quality Control Sa	mples		[Water Qua	lity Samples	
Pa	rameter	Equipment Blank	(ont)	Duplicate Sample		Parameter	Primary Sampl	ie
	pH	N/A	/eng	pH units		рН	6,39 pH uni	ts
Tota	al chlorine		ppm	ppm		Total chlorine	く、う pp	m
De	tergents		ppm	ppm		Detergents	<105 pp	<u>m </u>
	al copper		ppm	ppm ppm	-	Total phenols	K 105 pp	m m

Part 4. Comments:

*Turbidity

(outfall)

*Turbidity

(upstream)

Fecal Coliform

N/A

other Elastables = iron flok . A LOT of debris @ outfall. Bilysheen in multiple places, Whole sea bagin covered in iron Eloculation.

17.4

*Turbidity

(outfall)

*Turbidity

(upstream)

Fecal Coliform

15,2

N/A,

Anchorage	er: _137-	DRY WE FIE	EATHER SCRE	ENING ?M	Department of Public Works	WATERSHED MANAGEMENT
Part 1. Gener	ral Information					
1. Date	7-17-14	/ Time	1545			
2. Field Crew	I, Watk	ins	Water qu	alitv analvses conduc	ted by: I. Wati	kins
3. How long s	ince last rainfall?		less than 3 days	সি 3 or more da	vs Dunkn	0W/D
4 Size of last	rain event 4	inches (Attach data fr	om Anchorage Internatio	anal Airport or Girdwor	nd Websites provider	d on back of form)
5 End of nine	diamotor:	foot				u on back of lottil.)
5. End-oi-pipe			inches			
b. Depth of Wa	ater in end-ot-pipe:		inches			
Part 2. Visua	Observations					
7. Photograph	Log: Camera # an	d frame number (s)				
 Water flowin If NO, take Odors: 	ng from end-of-pipe e and log photograp	e? □ No ጆ ph of outfall, record any pertine 尾 No □	Yes nt information in comme Yes If yes, des	ents, and go to next ou cribe in comment sect	tfall.	lf YES, continue.
10. Floatables	in water flowing fro	m end-of-pipe: 🗆 None 🛛 M	oving oily sheen 🖄 Sur	face scum 🗆 Soapy s	uds 🖄 Debris 🛛 🗆	Other
 Vegetation Biology 	Harse tail	, <u>GIA34</u> 12.	Structural Condition: _	Almost Olled.	over w/dirt	iveg.
Part 3. Field /	Analyses					
14. Flow:	gal/min;	or $< O$,	25 L/min			
Low: Not inte	ense, water moving	y very slowly 🛛 Medium: \	Nater moving at a mode	erate rate	High; Intense water m	iovina verv auickly
15. Appearance	of water flowing fr	om end-of-pipe:	∑ ⊠ Cloudv/Mu	ddv		
16 Color of wat	er flowing from en	hof-nine: D Clear		in colin .	1.1	
				- mpca, Uma j		
17, water Quali	ty Analyses:	Quality Control Complete	•	I I		
		Equipment Blank	Dunlicate Samnle	Water	Quality Samples	
	Parameter	[1 each before sampling event]	[1 each sampling event]	Paramete	r Primary Samp	le
	pH Tatal ablaring	N/A	pH units	pH Tatal ablavit	<u>6,78 pH uni</u>	ts
	Detergents	ppm nnm	ppm nnm		c < 5 pp c / 2 = nn	m
	Total copper	ppm ppm	mqq	Total coppe	er < 105 pp	m
	Total phenols	ppm	ppm	Total pheno	ls < / pp	m
	*Turbidity		140	*Turbidity	154	
	*Turbidity	N/A	110	(outiall) *Turbidity		
	(upstream)	IN/A	2.1.4	(upstream) m .	
Part 4 Comm	nts.	- MA	NA			

Part 4. Comments:

A lot of suspended sediment

Anchorage	DRY WEATHI FIELD D	ER SCREENING ATA FORM	Department of Public Works	WATERSHED MANAGEMENT
Outfall Number: <u>54) - 1</u>				
Part 1. General Information				- <u> </u>
1. Date <u>-7/18</u>	Time 10	:41 AM		
2. Field Crew <u>CMEYN</u>	WATKINS	Water quality analyses co	nducted by:	
3. How long since last rainfall?	I raining now 🛛 less thar	a 3 days 🖾 🖾 🖾 🖾	re days 🛛 🗆 unki	nown
4. Size of last rain event.	inches (Attach data from Anch	orage International Airport or Gi	rdwood. Websites provide	d on back of form.)
5. End-of-pipe diameter:	feet	_inches		
6. Depth of water in end-of-pipe:C	feetinches			
Part 2. Visual Observations				
7. Photograph Log: Camera # and frame	e number (s) <u>102-2200</u>	······································		
 8. Water flowing from end-of-pipe? [If NO, take and log photograph of our 9. Odors: 	Í No □ Yes tfall, record any pertinent inform □ No □ Yes	ation in comments, and go to ne If yes, describe in commen	ext outfall. t section.	If YES, continue.
10. Floatables in water flowing from end-	of-pipe: 🗆 None 🛛 Moving oily	/ sheen □ Surface scum □ So	apy suds 🗆 Debris 🛛 🗆	Other
11. Vegetation:	12. Structur	al Condition:		
Part 3. Field Analyses				
14. Flow: gal/min;	OR			
Low: Not intense, water moving very s	owly 🛛 Medium: Water mo	oving at a moderate rate	□ High; Intense water r	noving very quickly
15. Appearance of water flowing from end	-of-pipe: 🛛 Clear	Cloudy/Muddy		
16. Color of water flowing from end-of-pip	e: 🗆 Clear	Colored		
17. Water Quality Analyses:				

Quality Control Samples						
Parameter	Equipment Blank [1 each before sampling event]	Duplicate Sample [1 each sampling event]				
pН	N/A	pH units				
Total chlorine	ppm	ppm				
Detergents	ppm	ppm				
Total copper	ppm	ppm				
Total phenols	ppm	ppm				
*Turbidity (outfall)						
*Turbidity (upstream)	N/A					
Fecal Coliform						

Water Quality Samples					
Parameter	Primary Sample				
рН	pH units				
Total chlorine	ppm				
Detergents	ppm				
Total copper	ppm				
Total phenols	ppm				
*Turbidity					
(outfall)					
*Turbidity					
(upstream)					
Fecal Coliform					

Anchorage	COF ALMS	DRY WE	EATHER SCRE	ENING RM	Department of Public Works	WATERSHED MANAGEMENT
Outfall Numb	er: <u>1417</u>	2-1				
Part 1. Gene	ral Information					
1. Date	7/18/14	Time	10:59 AM	_		
2. Field Crew	C MEYN	1 WATCHNS	Water qu	ality analyses conducted	by:	
3. How long s	ince last rainfall?	🗆 raining now 🛛	less than 3 days	3 or more davs		wn
4. Size of last	rain event. 🛛 🗶	inches (Attach data fr	om Anchorage Internatio	nal Airport or Girdwood	Websites provided	on back of form
5 End-of-pipe	diamotor:	foot			websites provided	on back of lottin.
6. Depth of Wa	ater in end-ot-pipe:		Inches			
Part 2. Visua	l Observations					
7. Photograph	n Log: Camera # an	id frame number (s) <u>(0 2 2</u>	282			
8. Water flowi	ng from end-of-pipe	e? □No 🗹	Yes			
If NO, take	e and log photogra	oh of outfall, record any pertine	nt information in comme	ents, and go to next outfa	ll. li	YES, continue.
9. Odors:		🖾 No 🛛	Yes If yes, des	cribe in comment section	7.	
10. Floatables	in water flowing fro	m end-of-pipe: 🖾 None 🗆 M	loving oily sheen 🗆 Sur	face scum 🗆 Soapy sud	s 🗆 Debris 🛛 🛛	Other
11. Vegetation	: some algae;	with grasses 12.	Structural Condition: _	good		
13. Biology _ <u>/</u>	one					
Part 3. Field /	Analyses					
14. Flow:	gal/min;	OR				
Low: Not inte	ense, water moving	y very slowly 🛛 🖾 Medium: '	Water moving at a mode	erate rate 🛛 Hi	ah; Intense water m	ovina verv auickly
15. Appearance	e of water flowing fr	om end-of-pipe: 🕅 Clear	Cloudy/Mu	ddv		
16 Color of wat	ter flowing from en	d-of-nine:				
17. Water Quai	ity Analyses:	Quality Control Complex		i r		
ple Potrie 1		Equipment Blank	S Dunlicate Sample	Water Qu	ality Samples	
	Parameter	[1 each before sampling event]	[1 each sampling event]	Parameter	Primary Sample	
	DH Total chlorine	N/A	pH units	DH Total chlorine	6.80pH unit	<u>S</u>
	Deteraents	20.05 ppm	mag	Detergents	COD ppr	<u>"</u>
	Total copper	<0.05 ppm	ppm	Total copper	<0.05 ppn	n
	Total phenols	< 0, ppm	ppm	Total phenols	<0-1 ppr	n
	*Turbidity	0-04		*Turbidity (outfall)	2.25	
	*Turbidity	N/A		*Turbidity	NIA	
	(upstream)	۰۰۰ ۲۰۰۰ میں میں میں میں میں میں میں میں میں میں		(upstream)	10/1	_
			k.		Y]

(upstream) Fecal Coliform

Air		DRY	NEATHER SCRE	EENII RM	NG	epartment of	
Anchorage Outfall Numbe	er: 1451-1			94792299 <u>2</u> 992	P1	ublic Works	WATERSHED MANAGEME
Part 1. Gener	al Information						
1. Date	7/18	Time	11:06 AM	-			
2. Field Crew	CMEYN,	INATKINS	Water qu	ality an	alyses conducted by	y:	
3. How long si	ince last rainfall?	□ raining now	🗆 less than 3 days	Ę	∄3 or more days	🗆 unkno	wn
4. Size of last r	ain event. <u><</u>	inches (Attach da	a from Anchorage Internati	onal Airj	port or Girdwood. V	Vebsites provided	on back of forn
5. End-of-pipe	diameter:	feet	inches				-
6. Depth of wa	ter in end-of-pipe:		<u> </u>				
Part 2. Visual	Observations						
7. Photograph	Log: Camera # an	d frame number (s)					
8. Water flowir	ng from end-of-pipe	? □ No	⊠⊄Yes				
If NO, take	and log photograp	h of outfall, record any per	tinent information in comme	ents, and	d go to next outfall.	lf	YES, continue
9. Odors:			LI Yes If yes, des	cribe in	comment section.		
10. Floatables	in water flowing fro	m end-of-pipe: 🖾 None 🏾 [□ Moving oily sheen □ Sur	face scu	um 🗆 Soapy suds	Debris C	other
11. Vegetation:	hone		12. Structural Condition: _	9000			
					······································		
	and yses						
14. FIOW:	gai/min;						
Low: Not inte	ense, water moving	very slowly LI Mediu	m: Water moving at a mode	erate rat	e □ High;	Intense water mo	ving very quicl
15. Appearance	of water flowing fro	om end-of-pipe: 🕅 Clear	🗆 Cloudy/Mu	ddy			
16. Color of wat	er flowing from enc	l-of-pipe: 🕅 Clear	Colored		·····		
17. Water Quali	ty Analyses:			_			
le		Quality Control Sam	oles		Water Qual	ity Samples	
1. 1	Parameter	Equipment Blank	Duplicate Sample		Parameter	Primary Sample	

Bottle 2

Parameter	Equipment B [1 each before samp	Duplicate Sample [1 each sampling event]		
рН	N/A		6.51	pH units
Total chlorine	1	ppm	20.5'	ppm
Detergents		ppm	20.05	ppm
Total copper	/	ppm	<0.05	ppm
Total phenols		ppm	< 0.1	ppm
*Turbidity (outfall)			0.6	52
*Turbidity (upstream)	N/A		NIA	
Fecal Coliform			V	

Parameter Primary Sample рΗ 6.55pH units <0.5 (0.15 Total chlorine ppm Detergents ppm Total copper <0.05 ppm Total phenols <0.1 ppm *Turbidity 0.67 (outfall) *Turbidity NIA (upstream) Fecal Coliform /

	Anchorage	A CONTROL OF ALLASS		DRY WE	ATHER SCRE	ENING M	Department of Public Works	WATERSHED MANAGEMENT		
	Outfall Numbe	er: <u>646</u> -	71							
	Part 1. Gener	ral Information								
	1. Date	7/18/14		Time	14:04	-				
	2. Field Crew	CMEYN	, I WATK	1NS	Water qu	ality analyses conducte	ed by:			
	3. How long s	ince last rainfall?	□ raining	now 🗆	less than 3 days	⊠3 or more day	s 🗆 unkno	own		
	4. Size of last	rain event<1	inches	(Attach data fr	om Anchorage Internatio	onal Airport or Girdwoo	d. Websites provided	on back of form.)		
	5. End-of-pipe	e diameter:	fe	eetO	inches					
	6. Depth of wa	ater in end-of-pipe:	0	feet	inches					
	Part 2. Visual	Observations		· · · · · · · · · · · · · · · · · · ·		*****************				
	7. Photograph	Log: Camera # an	d frame numbe	r (s) <u>102 - 27</u>	85					
	8. Water flowing	ng from end-of-pipe	e? □No	D	Yes					
	If NO, take	e and log photograp	oh of outfall, rec	ord any pertine	nt information in comme	nts, and go to next out	fall. li	YES, continue.		
	9. Odors:		🕅 No		Yes If yes, des	cribe in comment section	on.			
	10. Floatables	in water flowing fro	m end-of-pipe:	□ None □ M	oving oily sheen 🗆 Surf	ace scum 🗆 Soapy su	ds 🗆 Debris 🔹 🗋 🤇	Other		
	11. Vegetation: 13. Biology^	Moss in p cone	ipe	12.	Structural Condition:	Good				
	Part 3. Field A	Analyses					·····			
	14. Flow:	gal/min;	OR							
	Low: Not inte	ense, water moving	very slowly	□ Medium: \	Water moving at a mode	erate rate 🖾 H	ligh; Intense water m	oving very quickly		
	15. Appearance	e of water flowing fr	om end-of-pipe:	🖆 Clear	Cloudy/Muc	ddy				
	16. Color of wat	ter flowing from end	d-of-pipe:	🖾 Clear	Colored					
	17. Water Quali	ty Analyses:								
	Quality Control Samples Water Quality Samples									
Sa	mp Le Bothe	Parameter	Equipme	nt Blank sampling event]	Duplicate Sample	Parameter	Primary Sampl	e		
(MILL)		рН	N/	A	pH units	pH	7,18 pH unit	S		
		Total chlorine Detergents	<	ppm ppm	ppm ppm	Total chloring	≤ 20.5 ppr	<u>n</u>		
		Total copper		ppm ppm	ppm ppm	Total copper	20.05 ppr	<u>"</u>]		
		Total phenols		ppm	ppm	Total phenol	s < O . I ppr	n		
		*Turbidity				*Turbidity	0.73			
		*Turbidity				*Turbiditv		-		
		(upstream)	N/.	A		(upstream)	NA			
	l	Fecal Coliform			Kindiksexeeluu.	Fecal Coliforr	n <u> </u>			

ſ

	Anchorage		L COR	DRY WE Fie	EATH	ER SCRE ATA FOF	EENII RM	NG	Department of Public Works	WATERSHED MANAGEMENT
	Outfall Numb Part 1. Gene 1. Date 2. Field Crew 3. How long s 4. Size of last 5. End-of-pipe	e diameter:	<u>I WKTK/4</u> □ raining inches f	Time	less tha om Anch	4-14 Water qu n 3 days orage Internatio _inches	 uality an S onal Air	alyses conductec I 3 or more days port or Girdwood.	by: unkn- U unkn- Websites provideo	own I on back of form.)
-	6. Depth of w	ater in end-of-pipe:		_feet	inche	3				
	Part 2. Visua	Il Observations	-1 f		_ m 2 Ø	10				
;	 Water flowing flo	ing from end-of-pipe e and log photograp in water flowing fro n: <u>pone</u>	e? □ No oh of outfall, rec ☑ No m end-of-pipe:	⊠ ord any pertine ⊠ None □ M 12.	Yes ent inform Yes loving oil	ation in comme If yes, des y sheen □ Sur ral Condition: _	ents, and scribe in face scu	d go to next outfa comment section um □ Soapy sud	II. I n. s □ Debris □ □	f YES, continue. Other
- 	Part 3. Field	Analyses				<u></u>		<u> </u>		
	14. Flow:	gal/min;	OR							
I	□ Low: Not int	ense, water moving	very slowly	□ Medium: '	Water m	oving at a mode	erate ra	te 🗖 Hig	jh; Intense water m	oving very quickly
-	15. Appearance	e of water flowing fr	om end-of-pipe	: 🖾 Clear		□ Cloudy/Mu	ıddy	×		,
1	6. Color of wa	ter flowing from end	d-of-pipe:	🕅 Clear		Colored				
1	7. Water Qual	lity Analyses:								
			Quality Co	ontrol Samples	S]	Water Qu	ality Samples	
Sam	ple Bottu	Parameter	Equipme [1 each before	ent Blank sampling event]	Dupli [1 each	cate Sample sampling event]		Parameter	Primary Sampl	е
	2	pH Total chlorine	N	A ppm		pH units ppm		pH Total chlorine	6.77 pH unit	n
		Detergents		ppm		ppm	1	Detergents	<0.05 pp	n
		Total copper		ppm ppm		ppm	-	Total copper Total phenols	20.05 pp	<u>n</u>
		*Turbidity		<u></u>		ppm	1	*Turbidity	A 21	<u></u>
		(outfall)					-	(outfall) *Turbidity	0.5/	
		(upstream)	N	Ά				(upstream)	NA	
		Fecal Coliform			<u> </u>		l	Fecal Coliform	⊥ у	

1

NAME OF COLUMN

Part 4. Comments:

Anchorage		DRY W	EATHER SCRE	ENING M	epartment of Public Works	ATERSHED MANAGEMENT
Outfall Num!	ber: <u>591-1</u>	and the second		-		
Part 1. Gene	eral Information					
1. Date	7121/14	Time	14.00			
2. Field Crev	V C MEYNI	INATUNS		- ality analyses conducted l	W. I.W. C	M.
3 How long	since last rainfall?		lless than 3 days	503 or more days		'n
4. Size of lost		inches (Attach data f	rom Ancherone Internetic	Land Airport or Circlusod	Mahaitaa arauidada	11 11 hoole of former)
4. Size of last	rain event		rom Anchorage Internatio	onal Airport or Girdwood.	vvebsites provided o	n back of form.
5. End-of-pip	e diameter:	feet	inches			٠
6. Depth of w	vater in end-of-pipe:	feet <u>s</u>	>inches			
Part 2. Visua	al Observations		2			
7. Photograp	h Log: Camera # ar	d frame number (s) 102 -	2289			
 Water flow <i>If NO, tak</i> Odors: Floatables Floatables Vegetation Biology 	ning from end-of-pipe and log photograp is in water flowing fro n: <u>drainageway</u>	e? □ No ph of outfall, record any pertine ¬ No m end-of-pipe: □ None □ N <u> Fled in v[+ml g</u> ^{mss} 12	I Yes ent information in comme I Yes If yes, des Noving oily sheen 2 Surf 2. Structural Condition: _	nts, and go to next outfall. cribe in comment section. face scum 🖾 Soapy suds	lf γ □ Debris □ Ot	<i>'ES, continue.</i> her
Part 3. Field	Analyses	· · · · · · · · · · · · · · · · · · ·				
14 Flow:	C -gal/min:	OB				
⊠ Low: Not in	tense water moving	uvery slowly 🗖 Medium:	Water moving at a mode	erate rate 🛛 Hid). Intense water mov	ing very guickly
15 Appearance	o of water flowing fr	am and of nino: MClear				ing vory quickly
ro. Appearanc	e of water nowing in	on end-or-pipe. 🖾 Cieai		JUY		
 Color of water 	ater flowing from end	d-of-pipe: 🕅 Clear		······································		
17. Water Qua	lity Analyses:					_
,ple		Quality Control Sample	S	Water Qua	lity Samples	
He	Parameter	Equipment Blank [1 each before sampling event]	Duplicate Sample [1 each sampling event]	Parameter	Primary Sample	
enander.	pH	N/A	7.20 pH units	pH	7.19 pH units	
	I Otal chlorine	<u><0.5 ppm</u>	< 0.5 ppm	I otal chlorine Detergents	1 45 ppm	-
	Total copper	20.06 ppm	<0.05 ppm	Total copper	<0.05 ppm	1
	Total phenols		40.1 ppm	Total phenols	CO.I DOM	-1
					phil phil	
	*Turbidity (outfall)	0.17		*Turbidity (outfall)	2,22	
	*Turbidity (outfall) *Turbidity (upstream)	0-17 N/A		*Turbidity (outfall) *Turbidity (upstream)	2,22 N/A.	-

Anchorage		DRY W FII	EATHER SCRE	ENING RM	Department of Public Works	KATERSHED MANAGEME
Outfall Numb	er: <u>1498 -1</u>					,
Part 1. Gene	ral Information		-			
1. Date	7/21/14	Time	14:15	-		
2. Field Crew	C MEYN	1 WATKINS	Water qu	ality analyses conducted	by: I.W., C	G.M.
3. How long s	ince last rainfall?	□ raining now □] less than 3 days	🕅 3 or more days	unknov	wn
4. Size of last	rain event	inches (Attach data f	rom Anchorage Internatio	onal Airport or Girdwood.	Websites provided	on back of for
5. End-of-pipe	e diameter:	feet	inches			
6. Depth of w	ater in end-of-pipe:	feetO	inches			·
Part 2. Visua	l Observations			*******		
7. Photograph	n Log: Camera # an	d frame number (s) 192 - 3	2211			
 If NO, take Odors: Floatables Floatables Negetation Biology <u>▶</u> Part 3. Field <i>µ</i> H. Flow: <u>▶</u> Low: Not int 	in water flowing fro	oh of outfall, record any pertin ŶØNo □ m end-of-pipe: □ None □ N 12 OR very slowly ØMedium:	Present information in comme Present in	ents, and go to next outfal cribe in comment section face scum \Box Soapy suds good good face scum \Box Soapy suds good good face scum \Box Soapy suds good good	l. If b c c c c Debris □ O c o o o o o o o o o o o o o	YES, continue
15. Appearance	e of water flowing fr	om end-of-pipe: 🛛 Clear	Ď≵ Cloudy/Muo	ddy		,
16. Color of wat	ter flowing from end	I-of-pipe: Clear	🖾 Colored	hight tan		
17. Water Qual	ity Analyses:					
		Quality Control Sample	S Dunligato Sampla	Water Qu	ality Samples	_
nple	Parameter	[1 each before sampling event]	[1 each sampling event]	Parameter	Primary Sample	
2	Total chlorine	N/Appm	pH units ppm	Total chlorine	<0.5 ppm	-
	Detergents Total coppor	ppm	ppm	Detergents	0,/0 ppm	-
	Total phenols	ppm ppm	ppm ppm	Total phenols		_
	*Turbidity		21.7	*Turbidity	21.8	
	(outfall)	· · ·		1000000	,	
	(outfall) *Turbidity (upstream)	N/A	NIA	*Turbidity (upstream)	NA	-

Debnis = trash laught in outfall grade

Anchorage		DRY V	VEATHER SCRI	EENING RM	Department of Public Works	WATERSHED MANAGEN
Outfall Numl	ber:49 (e					
Part 1. Geno	eral Information					
1. Date	7/21/14	Time	14:30			
2. Field Crev	N C MEYN	IWATKING	Water o	uality analyses conducted	by: I.W. C	-, M.
2 Howlong	sings last rainfall?			in good or more days		
5. How long	Since last rainally					WH
4. Size of last	t rain event.	inches (Attach data	a from Anchorage Internat	ional Airport or Girdwood.	Websites provided	on back of for
5. End-of-pip	pe diameter:	feet	Dinches			
6. Depth of v	water in end-of-pipe:	feet	inches			
Part 2. Visu	al Observations					·····
7. Photograp	oh Log: Camera # ar	nd frame number (s)0	2-2293			
8. Water flow	ving from end-of-pipe	e? □No	M Yes			
If NO. tal	ke and log photograi	ph of outfall. record anv pert	inent information in comm	ents. and go to next outfal	1. If	YES. continu
9. Odors:		[⊠:No	□ Yes If yes, de	scribe in comment section		. 20, 001.1.1.4
10 Floatable	s in water flowing fro	2 om end-of-nine: NYNone C		rface scum 🗖 Scanv suds	Debris DO	thor
	s in water nowing ne					
11. Vegetation	n: teone ang		12. Structural Condition:	200d		·
13. Diology	p.cs.r				a	
Part 3. Field	Analyses					
14. Flow: 71	0 gal/min;	OR				
Low: Not in	ntense, water moving	g very slowly 🛛 🖾 Mediur	n: Water moving at a moo	lerate rate 🛛 🗆 Hig	h; Intense water mo	ving very quid
15 Annearanc	ce of water flowing fr	rom end-of-pipe. Clear	⊠ Cloudy/M	ıddy		
10.7 ppoulaite				uuuy		
10.0.1	a transflore de former de la company	a-ot-nine' i⊠ Clear	LI Colored			
16. Color of wa	ater flowing from end					
16. Color of wa	ater flowing from end ality Analyses:					
16. Color of wa	ater flowing from end ality Analyses:	Quality Control Samp	les	Water Qu	ality Samples]
16. Color of wa	ater flowing from end ality Analyses: Parameter	Quality Control Samp	Duplicate Sample	Water Qu Parameter	ality Samples Primary Sample]
16. Color of wa 17. Water Qua	ater flowing from end ality Analyses: Parameter pH	Quality Control Samp Equipment Blank [1 each before sampling event N/A	Duplicate Sample Duplicate Sample [1 each sampling event] PH units	Water Qu Parameter pH	ality Samples Primary Sample]
16. Color of wi 17. Water Qua , H.C.	ater flowing from end ality Analyses: Parameter pH Total chlorine	Quality Control Samp Equipment Blank [1 each before sampling event N/A pp	Duplicate Sample Duplicate Sample I [1 each sampling event] PH units Physical Ppm	Water Qu Parameter pH Total chlorine	ality Samples Primary Sample 7,14 pH units <0.5 ppm	
16. Color of wi 17. Water Qua 19. Constant 19. Constant 19. Constant 19. Constant 19. Color of wi 19. Color of wi 19. Color of wi 17. Water Qua	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents	Quality Control Samp Equipment Blank [1 each before sampling event N/A ppi	Duplicate Sample [1 each sampling event] pH units m ppm n ppm	Water Qu Parameter pH Total chlorine Detergents	ality Samples Primary Sample 7,14 pH units <0.5 ppm 0-15 ppm	
16. Color of wi 17. Water Qua 17. Water Qua 17. Water 3	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents Total copper	Quality Control Samp Equipment Blank [1 each before sampling event N/A pp pp	Duplicate Sample [1 each sampling event] pH units m ppm m ppm m ppm	Water Qu Parameter pH Total chlorine Detergents Total copper	ality Samples Primary Sample 7,14 pH units <0.5 ppm 0-15 ppm <0-05 ppm	
16. Color of wi 17. Water Qua 17. Water Qua 3	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents Total copper Total phenols	Quality Control Samp Equipment Blank [1 each before sampling event N/A pp pp pp	Duplicate Sample [1 each sampling event] pH units n ppm m ppm n ppm n ppm n ppm	Water Qu Parameter pH Total chlorine Detergents Total copper Total phenols	ality Samples Primary Sample 7,74 pH units <0.5 ppm 0-15 ppm <0.5 ppm <0.0 ppm	
16. Color of wi 17. Water Qua 19. C. 3	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents Total copper Total phenols *Turbidity (outfall)	Quality Control Samp Equipment Blank [1 each before sampling event N/A ppi ppi ppi	Duplicate Sample [1 each sampling event] pH units m ppm n ppm n ppm n ppm n ppm n ppm n ppm	Water Qu Parameter pH Total chlorine Detergents Total copper Total phenols *Turbidity (outfall)	ality Samples Primary Sample 7,/4 pH units <0.5 ppm 0-15 ppm <0.05 ppm <0.1 ppm <0.1	
16. Color of wi 17. Water Qua 17. Water Qua	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents Total copper Total phenols *Turbidity (outfall) *Turbiditv	Quality Control Samp Equipment Blank [1 each before sampling event N/A pp pp pp	Duplicate Sample [1 each sampling event] pH units m ppm m ppm n ppm n ppm n ppm	Water Qu Parameter pH Total chlorine Detergents Total copper Total phenols *Turbidity (outfall) *Turbiditv	ality Samples Primary Sample 7,/4 pH units <0.5 ppm <0.15 ppm <0.05 ppm <0.1 ppm 40,1	
16. Color of wi 17. Water Qua , U.L. 3	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents Total copper Total phenols *Turbidity (outfall) *Turbidity (upstream)	Quality Control Samp Equipment Blank [1 each before sampling event N/A ppi ppi ppi	Duplicate Sample Duplicate Sample [1 each sampling event] pH units ppm ppm ppm ppm ppm	Water QuParameterpHTotal chlorineDetergentsTotal copperTotal phenols*Turbidity(outfall)*Turbidity(upstream)	ality Samples Primary Sample 7,74 pH units <0.5 ppm 0-15 ppm <0.05 ppm <0.0 ppm <0.1 ppm 40,1 M/A	
16. Color of wi 17. Water Qua 7. H.c. 3	ater flowing from end ality Analyses: Parameter pH Total chlorine Detergents Total copper Total phenols *Turbidity (outfall) *Turbidity (upstream) Fecal Coliform	Quality Control Samp Equipment Blank [1 each before sampling event N/A ppi ppi ppi ppi	Iles Duplicate Sample [1 each sampling event] PH units Ph Ppm	Water QuParameterpHTotal chlorineDetergentsTotal copperTotal phenols*Turbidity(outfall)*Turbidity(upstream)Fecal Coliform	ality Samples Primary Sample 7,/4 pH units <0.5 ppm 0-15 ppm <0.05 ppm <0.1 ppm <0.1 ppm 40,1 <i>N/A</i>	

Anchorage		DRY WE	EATHER SCRE	ENING RM	Department of Public Works WATERSHED MANAGEN
Outfall Numb	oer: <u>1056</u> -	117			
Part 1. Gene	eral Information				
1. Date	7/21/14	Time	14:45	-	į. ج
2. Field Crew	CMEY	U I WATKINS	Water qu	ality analyses conducted	by: <u>I.W., C.M.</u>
3. How long s	since last rainfall?	□ raining now □	less than 3 days	⊠r3 or more days	
4. Size of last	rain event. <u>< \</u>	inches (Attach data fr	om Anchorage Internatio	onal Airport or Girdwood.	Websites provided on back of for
5. End-of-pip	e diameter:	<u>∠</u> feet	inches		
6. Depth of w	vater in end-of-pipe:		inches		
Part 2. Visua	al Observations	An			******
7. Photograp	h Log: Camera # an	d frame number (s) <u>102-</u> Z	295		
 Water flow If NO, tak Odors: 	ing from end-of-pipe and log photograp	e? □ No ⊠ bh of outfall, record any pertine □ No ∯	Ýes nt information in comme Yes If yes, des	ents, and go to next outfal cribe in comment section	l. If YES, continue
10. Floatables	in water flowing fro	m end-of-pipe: 🖾 None 🛛 M	loving oily sheen 🗆 Sur	face scum 🗆 Soapy suds	B Debris 🖄 Other
 Vegetation Biology 	some veg de 1: outtall none	grad 12.	Structural Condition: _	good	
Part 3. Field	Analyses				
14. Flow:		OR			
🖄 Low: Not int	tense, water moving	very slowly 🛛 Medium: '	Water moving at a mode	erate rate 🛛 Hig	h; Intense water moving very guid
15. Appearanc	e of water flowing fr	om end-of-pipe: 12 Clear	_ □ Cloudv/Mu	ddv	
16. Color of wa	ater flowing from end	d-of-pipe: 🛛 🖾 Clear	Colored		
17 Water Qua	lity Analyses				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Quality Control Samples	3	Water Ou	ality Samples
	Parameter	Equipment Blank	Duplicate Sample	Parameter	Primary Sample
Sampe	рН	N/A	pH units	рН	6.44 pH units
Bottle	Total chlorine	ppm ppm	ppm ppm	Total chlorine	20,5 ppm
4	Total copper	ppm	ppm ppm	Total copper	<0.05 ppm
	Total phenols	ppm	ppm	Total phenols	20.1 ppm
	*Turbidity			*Turbidity	7.14
	*Turbidity	NIA		*Turbidity	Alla
	(upstream)			(upstream) Fecal Coliform	1AL
Part 4. Comm	nents:				
Byp.	iss outlet c	wound sed basin)		19 ⁴

-	J.		
6	dos:	Sulfur	

Orange Iron floc in out fall channel extending into creek

Appendix D

Chains of Custody

SGS North America Inc. CHAIN OF CUSTODY RECOR

Locations Nationwide Alaska

Maryland New Jersey New York North Carolina Indiana Kentucky West Virgina

www.us.sgs.com

		DR			Inst	ructio	ns: S	: Sections 1 - 5 must be filled out. s may delay the onset of analysis.											
	CONTACT:	ESAAC PH	ONE NO: 6	44-2	20 88	Sec	ction 3		<u>ns n</u>		elay t	Prese	rvative	<u>or an</u> a	aiysis	5		Page of	
Section	PROJECT	Wenther PHE	DJECT/ SID/ RMIT#:			# C													
		E-N		r. wah dr. Za	king 🕤 K Com	O N T A	Type C = COMP G =	Con											
	2525	st st 305 P.C). #: Myy	EDI	<u>29</u>	I N	GRAB MI = Multi Incre-	20											
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX MATRIX CODE	E R S	mental Soils	S.S.										REMARKS/ LOC ID	
	QA-	491-1	07/16/14	1455	Hab	1	G												
	QA	<u>491-10</u>		1455	00		G												
2	(3) A	213-1	<u> </u>	1440	0	1	G												_
ctio	$(\underline{\mathbf{G}})_{\mathbf{A}}$	<u>496-1</u>		1230	<u> </u>		G												
ŝ	AG	220-4		1250	-0	Ų	<u>G</u>											· · · ·	_
							1												\neg
																			\neg
		<u></u>																	
	Relinquished	i By: (1)	Date	Time	Received By	;	_			Secti	on 4	DOE) Projec	t? Ye	s No	Data	a Delive	erable Requirements	:
	786		716-14	1632				>		Ceal									
	Relinquished	By: (2)	Date	Time	Received By					Reques	sted Tu	Irnarou	ind Tim	e and/	or Spec	ial Insti	ruction	s:	4
n 5																		,	
ectic	Relinquished	By: (3)	Date	Time	Received By	:	· .· .	*											
Ň							~			Temp E	Blank °	c: <u>4</u>	9°C	#2	205	Cha	in of C	ustody Seal: (Circle)	
2 of	Relinquished	By: (4)	Date	Time	Received Fo	r Labora	atory By:					or Aml	bient []		INT	АСТ	BROKEN ABSENT	<u>)</u>
4		\square	7/16/14	16:32	Lern	X	Xras	ne		(See	attach	ed San	ple Re	ceipt F	orm)	(See at	ttached	Sample Receipt For	rm)
	[] 200 W. P	otter Drive Anchorage, AK 99	518 Tel: (907)	562-2343 Fa	x: (907) 561-5	301	(1		http://w	ww.sgs	.com/te	erms-an	d-condi	itions				

] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

SGS North America II CHAIN OF CUSTODY RE

Locations Nationwide

Alaska Maryland New Jersey New York North Carolina Indiana West Virgina Kentucky

www.us.sgs.com

	CLIENT: H	DR INC.		Instructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.							1						
	CONTACT:	ISAAC WAFKing PHO	ONE NO: 90	7-644-	2099	Sec	tion 3				Prese	rvative					Page of
ection	PROJECT Pr NAME:	y Weathor Schening PWS	JEC1/ ID/ MIT#:			# C											
v.	REPORTS TO スジマラ C	D: HDR Inc E-N 51. 51 307 99503	IAIL: JSAAC,	Watking Ql	HORINC.Com	O N T	Type C = COMP										
	INVOICE TO:	5 <i>Ame</i> QU 5 <i>Ame</i> P.0	OTE #: . #:			A I N	G = GRAB MI = Multi	12									
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	Incre- mental Soils										REMARKS/ LOC ID
	WA	37-1	7-17-14	1545	H2C	1	6	X			×.						
	QA	388-201	<u> </u>	1515		1	G										
2	(3) h	595-10		1420		1	G	×									
Ctio	4) H	395-1		1420		1	9			1							
ů.																	
										<u> </u>							
	····			-													
	Relinquishe	d By: (1)	Date	Time	Received By	:			Sec	tion 4) Projec	ct? Yes	No	Data	a Delive	rable Requirements:
	194		7-17-14	1558	,	(\sum		Coo	ler ID:							
S.	Relinquished	i By: (2)	Date '	Time	Received By	:			Reque	ested Tu	ırnarou	ind Tim	ie and/o	r Spec	ial Insti	ruction	s:
, c						-											
to ev	Relinquished	I By: (3)	Date	Time	Received By	•							~		2		
ľ]								Temp	Blank °	c:4	.90	#2	DD	Cha	in of C	ustody Seal: (Circle)
9	Relinquished	I By: (4)	Date	Time	Received Fo	r Labor	atory By:			· I	or Aml	bient [1		INTA	АСТ	BROKEN ABSENT
Ī	4		17/14	15:54	Keen	Δ	hæ	2000	٦ (Se	e attach	ed Sam	ple Re	ceipt Fo	orm)	(See at	ttached	Sample Receipt Form)
	r 1 200 Vet D	atter Drive Anchorone, AK 005	19 Tol: (007)	E62 2242 Ea	W (007) EG4 E	201	/	\mathcal{T}	http://		oom/ło		d oondit	iono			

 \checkmark

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

SGS North America In **CHAIN OF CUSTODY RE(**

Locations Nationwide

Alaska Maryland New Jersey New York North Carolina Indiana West Virgina Kentucky

www.us.sgs.com

								Instructions: Sections 1 - 5 must be filled out.											
	CLIENT: 14	DR Inc.					On	nissioi	<u>ns n</u>	nay de	<u>elay t</u>	he o	nset o	of an	alysis	5.		- 1.	1
-	CONTACT:	I EAAC WATKing PHO	ONE NO: 903	7-644-2	ぱちょ	Sec	tion 3					Prese	rvative					Page <u>_</u> of	
Section	PROJECT ガ NAME: REPORTS TC スクスケー INVOICE TO:	PRO Provide Providence Provi	лест ID/ MIT#: IAIL: <i>EAHC. (САА)</i> OTE #: . #:	tkins QH Ulathe Sci	DRIM. Com Y reen inc	# C O N T A I N	Type C = COMP G = GRAB MI = MI = MIti Incre-	1 Celision											
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX MATRIX CODE	RS	mental Soils	1.2°										REMARK LOC ID	S/
	ØΑ	646-71	07-18-14	1404	1.50	/	G	~											
	© A	ER UN COR	07-18-14	1414	Hz0	1	6	~											
2	3A	1451-1	G7-18-14	1106	1120		6	ν											
fion	(D) A	1451-10	>	1106	H,O	1	G	V											
Sec	(5) A	1417-1	V	1059	HJO	<u> /</u>	G	~											
																			·
	Relinquishe	d By: (1)	Date	Time	Received By	:				Sect	ion 4	DOD) Projec	ct? Yes	s No	Data	a Delive	erable Requirem	ents:
	Spe	alla	7-18-14		ţ.		\sum			Cool	er ID:								
	Relinquished	d By: (2)	Date	Time	Received By	:				Reque	sted Tu	Irnarou	ind Tim	e and/	or Spec	ial Inst	ruction	s:	
u S U																			
ecti	Relinquished	d By: (3)	Date	Time	Received By	<i>'</i> :													_
ſ										Temp	Blank °	C:				Cha	ain of C	ustody Seal: (C	ircle)
1	Relinquished By: (4) Date Time Received				Received Fo	r Labor	atory By:				C	or Am	bient [\supset		_ (INT	ACT	BROKEN ABS	SENT
-	4		17/18/14	15:45	Len	$\sim \mathcal{N}$	100	90	R	(See	attach	ed San	iple Re	ceipt F	orm)	(See a	ttached	Sample Receip	ot Form)

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide ska Maryland w Jersey New York rth Carolina Indiana est Virgina Kentucky www.us.sgs.com

	aurur ü	Do Trac		Instructions: Sections 1 - 5 must see							ζ • • • • • • • • • • • • • • • • • • •							
	CLIENT: M	VR FNC			Or	<u>nissior</u>	<u>ıs n</u>	nay de	elay t	he o	nset o	of anal	ysis			Page 1 of 1		
_	CONTACT:I	SAAC WATE: 49 PHO	ONE NO:	644-20	66	Sec	tion 3					Prese	rvative					· ·····························
Section	PROJECT \mathcal{D}_{i} NAME:	ry Weather PWS Screening	ID/ MIT#:			# C												
	REPORTS IC ネグネグ C	E-M 51. Ste 305 99567	AIL: ISAACA OTE #:	Watkins G	ADRINC. Com	N T A	Type C = COMP G =											
_		5.km & P.O	.#:	E DW	5	I N	GRAB MI = Multi	1 ce										
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	R S	mental Soils	ev										REMARKS/ LOC ID
	(DA	1056-117	67/21/14	1445	H2O	<u>t</u>	G	X										
(a)A	496-1	\downarrow χ'	1430	<u> </u>	<u>Î</u>		X										
~	3)A	1488-1		1415	/	<u> l </u>		X										
<u>f</u> j	2 F	581-1	_ <i>(</i>	1400	<u> </u>	ſ		X										
Sec	SA	581-10	<u>v</u>	1400	V.	1	V											
																		·
				···.														
╞	Relinquished	I By: (1)	Date	Time	Received By					Sect	ion 4	DOE) Projec	t? Yes	No	Data	Delivera	ble Requirements:
	64	1 bdelat	7-21-14	1530														
-	Relinguished	By: (2)	Date	Time	Received By					Cool	er ID: _ sted Tu	irnarou	ind Tim	e and/or	Speci	al Instr	uctions:	
on 5	•									lioquo	0104 10			e una or	opeoi		uotions.	
ecti	Relinquished	By: (3)	Date	Time	Received By													
رم ا										Temp	Blank °	c: _9	$\sqrt{\mathcal{O}}/$	17 24	1	Cha	in of Cus	tody Seal: (Circle)
	Relinquished	By: (4)	Date	Time	Received Fo	r Labor	atory By:					or Aml	bient [1		INTA		OKEN ABSENT
L	*		2/21/14	15130	Mh	M		- M		(See	attach	ed San	ple Re	ceipt For	m) :	(See at	tached S	ample Receipt Form

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

Appendix E

Data Package

Laboratory Report of Analysis

To: HDR Alaska, Inc. 2525 C Street #305 Anchorage, AK 99503 (907)644-2000

Report Number: 1143155

Client Project: Dry Weather Screening

Dear Isaac Watkins,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 07/22/2014 4:35:24PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (http://www.sgs.com/terms_and_conditions.htm), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6020, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits.
- ! Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CL Control Limit
- D The analyte concentration is the result of a dilution.
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- IB Instrument Blank
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 1/2 of the LOQ)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.
- Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Results of 491-1							
Client Sample ID: 491-1 Client Project ID: Dry Weather Scree Lab Sample ID: 1143155001 Lab Project ID: 1143155	ning	C R M S L	ollection D eceived Da latrix: Wat olids (%): ocation:	ate: 07/16/ ate: 07/16/1 er (Surface,	14 14:55 4 16:32 Eff., Gr	5 ound)	
Results by Microbiology Laboratory							
<u>Parameter</u> Fecal Coliform	<u>Result Qual</u> 300	<u>LOQ/CL</u> 10.0	<u>DL</u> 10.0	<u>Units</u> col/100n	<u>DF</u> nL 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/16/14 18:09
Batch Information Analytical Batch: BTF13628 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/16/14 18:09 Container ID: 1143155001-A							

SGS	

Results of 491-1D							
Client Sample ID: 491-1D Client Project ID: Dry Weather Scree Lab Sample ID: 1143155002 Lab Project ID: 1143155	Collection Date: 07/16/14 14:55 Received Date: 07/16/14 16:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Microbiology Laboratory			_				
<u>Parameter</u> Fecal Coliform	<u>Result</u> Qual 230	<u>LOQ/CL</u> 10.0	<u>DL</u> 10.0	<u>Units</u> col/100m	<u>DF</u> L 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/16/14 18:09
Batch Information Analytical Batch: BTF13628 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/16/14 18:09 Container ID: 1143155002-A							

Print Date: 07/22/2014 4:35:35PM

Results of 213-1 Client Sample ID: 213-1 Client Project ID: Dry Weather Screening Lab Sample ID: 1143155003 Lab Project ID: 1143155		Ci Ri M Si Lo	ollection D eceived D atrix: Wat olids (%): ocation:	ellection Date: 07/16/14 14:40 eceived Date: 07/16/14 16:32 atrix: Water (Surface, Eff., Grou lids (%): cation:			
Results by Microbiology Laboratory			_			Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Fecal Coliform	1.64 U	1.64	1.64	col/100m	1L 1		07/16/14 18:09
Batch Information Analytical Batch: BTF13628 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/16/14 18:09 Container ID: 1143155003-A							

Results of 436-1						
Client Sample ID: 436-1 Client Project ID: Dry Weather Screening Lab Sample ID: 1143155004 Lab Project ID: 1143155		C R M S La	ollection E eceived D atrix: Wat olids (%): ocation:	Date: 07/16/14 12 ate: 07/16/14 16 ter (Surface, Eff.,		
Parameter Fecal Coliform	<u>Result Qual</u> 1.64 U	<u>LOQ/CL</u> 1.64	<u>DL</u> 1.64	<u>Units</u> DF col/100mL 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/16/14 18:09
Analytical Batch: BTF13628 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/16/14 18:0 Container ID: 1143155004-A	9					

Print Date: 07/22/2014 4:35:35PM

Results of 550-2							
Client Sample ID: 550-2 Client Project ID: Dry Weather Screening Lab Sample ID: 1143155005 Lab Project ID: 1143155		Collection Date: 07/16/14 12:50 Received Date: 07/16/14 16:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Parameter Fecal Coliform	<u>Result Qual</u> 118	<u>LOQ/CL</u> 2.00	<u>DL</u> 2.00	<u>Units</u> col/100m	<u>DF</u> L 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/16/14 18:09
Batch Information Analytical Batch: BTF13628 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/16/14 18:09 Container ID: 1143155005-A							

SGS								
Results of 37-1 Client Sample ID: 37-1 Client Project ID: Dry Weather Screening Lab Sample ID: 1143189001 Lab Project ID: 1143189		C R M S	ollection D eceived D latrix: Wat olids (%): pocation:	llection Date: 07/17/14 15:45 ceived Date: 07/17/14 15:59 trix: Water (Surface, Eff., Ground) lids (%): cation:				
Results by Microbiology Laboratory Parameter Fecal Coliform	Result Qual 16	<u>LOQ/CL</u> 1.64	<u>DL</u> 1.64	<u>Units</u> col/100m	<u>DF</u> 1L 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/17/14 17:15	
Batch Information Analytical Batch: BTF13630 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/17/14 17:15 Container ID: 1143189001-A								

Print Date: 07/22/2014 4:55:29PM
SGS Results of 388-201							
Client Sample ID: 388-201 Client Project ID: Dry Weather Screen Lab Sample ID: 1143189002 Lab Project ID: 1143189	Ci Ri M Si Lo	ollection E eceived D atrix: Wa olids (%): ocation:	Date: 07/17/1 Date: 07/17/14 ter (Surface,	4 15:15 4 15:59 Eff., Gr	15:15 15:59 ff., Ground)		
Parameter Fecal Coliform	<u>Result Qual</u> 2.0	<u>LOQ/CL</u> 2.00	<u>DL</u> 2.00	<u>Units</u> col/100m	<u>DF</u> L 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/17/14 17:15
Batch Information Analytical Batch: BTF13630 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/17/14 17:15 Container ID: 1143189002-A							

Print Date: 07/22/2014 4:55:29PM

Results of 595-1D							
Client Sample ID: 595-1D Client Project ID: Dry Weather Scree Lab Sample ID: 1143189003 Lab Project ID: 1143189	Collect Receiv Matrix: Solids Locatic		lection Date: 07/17/14 14:20 ceived Date: 07/17/14 15:59 trix: Water (Surface, Eff., Gro ids (%): :ation:				
Parameter Fecal Coliform	<u>Result Qual</u> 1.64 U	<u>LOQ/CL</u> 1.64	<u>DL</u> 1.64	<u>Units</u> col/100mL	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/17/14 17:15
Batch Information Analytical Batch: BTF13630 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/17/14 17:15 Container ID: 1143189003-A							

Results of 595-1 Client Sample ID: 595-1		С	ollection D	ate: 07/17/14	14:20			
Client Project ID: Dry Weather Screen	Received Date: 07/17/14 15:59							
Lab Sample ID: 1143189004 Lab Project ID: 1143189	Solids (%):							
		Lo	ocation:					
Results by Microbiology Laboratory			_					
<u>Parameter</u> Fecal Coliform	<u>Result Qual</u> 1.64 U	<u>LOQ/CL</u> 1.64	<u>DL</u> 1.64	<u>Units</u> col/100mL	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/17/14 17:15	
Batch Information Analytical Batch: BTF13630 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/17/14 17:15 Container ID: 1143189004-A								

Print Date: 07/22/2014 4:55:29PM

Client Sample ID: 646-71 Client Project ID: PM&E Dry Weathe Lab Sample ID: 1143208001 Lab Project ID: 1143208	Collection Date: 07/18/14 14:04 Received Date: 07/18/14 15:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Microbiology Laboratory			_				
<u>Parameter</u> Fecal Coliform	<u>Result Qual</u> 48	<u>LOQ/CL</u> 2.00	<u>DL</u> 2.00	<u>Units</u> col/100ml	<u>DF</u> _ 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/18/14 17:04
Batch Information Analytical Batch: BTF13633 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/18/14 17:04 Container ID: 1143208001-A							

COC

Results of ER UN COR							
Client Sample ID: ER UN COR Client Project ID: PM&E Dry V Lab Sample ID: 1143208002 Lab Project ID: 1143208	t Veather Screening	C R M S	Collection Date: 07/18/14 Received Date: 07/18/14 Matrix: Water (Surface, E Solids (%): Location:				
Results by Microbiology Labo	Result Qual	100/01		Linits	DE	Alle	

1.64 U

1.64

col/100mL 1

1.64

Print Date: 07/23/2014 8:44:18AM

Fecal Coliform

Batch Information

Analyst: MEV

Analytical Batch: BTF13633 Analytical Method: SM21 9222D

Analytical Date/Time: 07/18/14 17:04 Container ID: 1143208002-A Allowable Limits

Date Analyzed

07/18/14 17:04

Results of 1451-1						
Client Sample ID: 1451-1 Client Project ID: PM&E Dry Weather Lab Sample ID: 1143208003 Lab Project ID: 1143208	Collection Date: 07/18/14 11:06 Received Date: 07/18/14 15:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Microbiology Laboratory			_			
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>Allowable</u> DF <u>Limits</u>	Date Analyzed
Fecal Coliform	2.0	2.00	2.00	col/100mL [·]	l	07/18/14 17:04
Batch Information						
Analytical Batch: BTF13633 Analytical Method: SM21 9222D						

000

Results of 1451-1D							
Client Sample ID: 1451-1D Client Project ID: PM&E Dry Weather Lab Sample ID: 1143208004 Lab Project ID: 1143208	Collection Date: 07/18/14 11:06 Received Date: 07/18/14 15:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Microbiology Laboratory						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Fecal Coliform	1.64 U	1.64	1.64	col/100n	nL 1		07/18/14 17:04
Batch Information Analytical Batch: BTF13633 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/18/14 17:04 Container ID: 1143208004-A							

000

Results of 1417-1							
Client Sample ID: 1417-1 Client Project ID: PM&E Dry Weather Lab Sample ID: 1143208005 Lab Project ID: 1143208	Collection Date: 07/18/14 10:59 Received Date: 07/18/14 15:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Microbiology Laboratory							
<u>Parameter</u> Fecal Coliform	<u>Result</u> Qual 4.0	<u>LOQ/CL</u> 2.00	<u>DL</u> 2.00	<u>Units</u> col/100n	DF nL 1	<u>Allowable</u> Limits	<u>Date Analyzec</u> 07/18/14 17:04
Batch Information							
Analytical Batch: BTF13633 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/18/14 17:04							

000

SGS	

- Results of 1056-117							
Client Sample ID: 1056-117 Client Project ID: Dry Weather Scree Lab Sample ID: 1143235001 Lab Project ID: 1143235	Collection Date: 07/21/14 14:45 Received Date: 07/21/14 15:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Microbiology Laboratory			_				
<u>Parameter</u> Fecal Coliform	<u>Result Qual</u> 12	<u>LOQ/CL</u> 1.67	<u>DL</u> 1.67	<u>Units</u> col/100m	<u>DF</u> וL 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/21/12 16:57
Batch Information Analytical Batch: BTF13635 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/21/12 16:57 Container ID: 1143235001-A							

Print Date: 07/29/2014 11:24:07AM

Results of 496-1							
Client Sample ID: 496-1 Client Project ID: Dry Weather Scree Lab Sample ID: 1143235002 Lab Project ID: 1143235	Collection Date: 07/21/14 Received Date: 07/21/14 Matrix: Water (Surface, E Solids (%): Location:			14 14:30 4 15:32 Eff., Gr	4 14:30 15:32 Eff., Ground)		
Parameter Fecal Coliform	<u>Result Qual</u> 30	<u>LOQ/CL</u> 2.00	<u>DL</u> 2.00	<u>Units</u> col/100m	DF nL 1	<u>Allowable</u> Limits	Date Analyzed 07/21/12 16:57
Batch Information Analytical Batch: BTF13635 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/21/12 16:57 Container ID: 1143235002-A							

Results of 1488-1				nato: 07/21/1	4 14.15				
Client Sample ID: 1488-1 Client Project ID: Dry Weather Screening		Received Date: 07/21/14 14:15							
Lab Sample ID: 1143235003	Matrix: Water (Surface, Eff., Ground)								
Lab Project ID: 1143235	So	olids (%):							
		Lo	ocation:						
Results by Microbiology Laboratory			_						
<u>Parameter</u> Fecal Coliform	<u>Result Qual</u> 12	<u>LOQ/CL</u> 1.67	<u>DL</u> 1.67	<u>Units</u> col/100ml	<u>DF</u> L 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/21/12 16:57		
Batch Information Analytical Batch: BTF13635 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/21/12 16:57 Container ID: 1143235003-A									

Print Date: 07/29/2014 11:24:07AM

Results of 581-1							
Client Sample ID: 581-1 Client Project ID: Dry Weather Screening Lab Sample ID: 1143235004 Lab Project ID: 1143235		Ci Ri M Si Lo					
Parameter Fecal Coliform	<u>Result Qual</u> 17	<u>LOQ/CL</u> 1.67	<u>DL</u> 1.67	<u>Units</u> col/100mL	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 07/21/12 16:57
Batch Information Analytical Batch: BTF13635 Analytical Method: SM21 9222D Analyst: MEV Analytical Date/Time: 07/21/12 16: Container ID: 1143235004-A	57						

SGS								
Results of 581-1 D								
Client Sample ID: 581-1 D Client Project ID: Dry Weather S Lab Sample ID: 1143235005 Lab Project ID: 1143235	Collection Date: 07/21/14 14:00 Received Date: 07/21/14 15:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Microbiology Labora	tory		—					
<u>Parameter</u> Fecal Coliform	<u>Result</u> Qual 31	<u>LOQ/CL</u> 1.64	<u>DL</u> 1.64	<u>Units</u> col/100m	DF nL 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 07/21/12 16:57	
Batch Information Analytical Batch: BTF13635 Analytical Method: SM21 9222D								

Print Date: 07/29/2014 11:24:07AM

Analyst: MEV

Analytical Date/Time: 07/21/12 16:57 Container ID: 1143235005-A

Appendix F

Outfall Sampling Site Photographs

Ship Creek **436-1**: North bank of Ship Creek, east of C St bridge.

Ship Creek **550-2**: South bank of Ship Creek just east of the Bridge Restaurant.

Ship Creek **213-1**: North of Allied building.

Ship Creek 491-1: On Ship Creek trail near Alaska Flo-Wall Distributors.

Fish Creek **595-1**: Between W 34th Avenue and Kona Lane.

Fish Creek 388-201: Corner of Northwood Drive and Haru Lane.

Fish Creek **37-1**: Chugach Way near Spenard Road.

Eagle River **541-1**: East of Mountain Point Circle. Outfall was dry at time of sampling.

Eagle River 1417-1: South of Eagle Place addresses 19920 and 19862 Driftwood Bay Drive.

Eagle River 1451-1: Near west corner of Riverside Drive.

Eagle River **646-71**: South bank; Chain of Rock Street and Teklanika Drive.

Eagle River 1375-99: North bank; Chain of Rock Street and Teklanika Drive

Campbell Creek 581-1: Near bike path at Arctic Blvd

Campbell Creek 1488-1: Behind Las Margaritas property on Dimond Blvd and C St.

Campbell Creek 496-1: Adjacent to Nadine Street.

Campbell Creek 1056-117: Southwest corner of Carriage Drive.

Damaged, Clogged or Submerged Outfalls

Ship Creek 119-1: Jacked up and rusted out.

Ship Creek 189-1: Submerged outfall

Fish Creek 1310-201: New construction and new outfalls

Fish Creek 584-1: Before clearing

Fish Creek 584-1: After clearing debris

Fish Creek 1277-59: Clogged with sediment

Fish Creek 686-1: Completely submerged

Fish Creek 391-1: End of pipe damaged and submerged

Fish Creek 480-1: Outfall potentially moved during construction without HGDB update

Campbell Creek 642-1: Almost completely submerged

Campbell Creek 551-1: Completely submerged

Campbell Creek 447-64: Broken and bent. Note Creek to right, outfall flowing, but is inaccessible