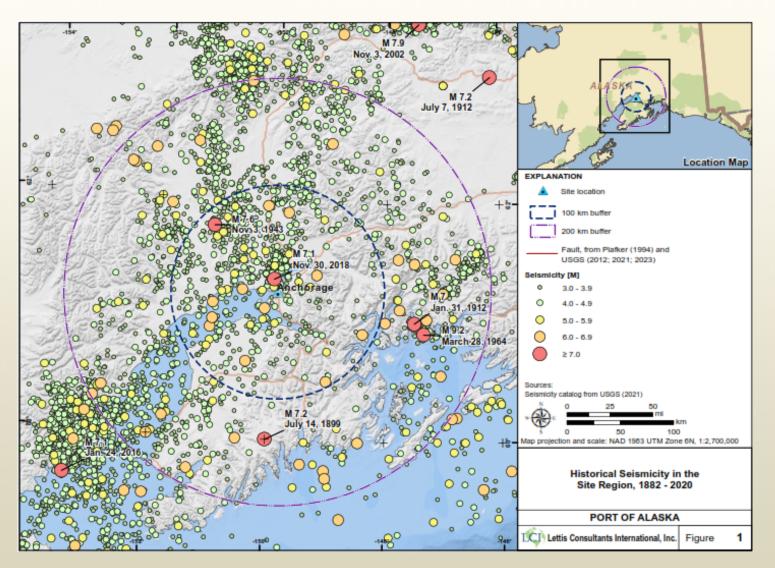
IV.A.

1

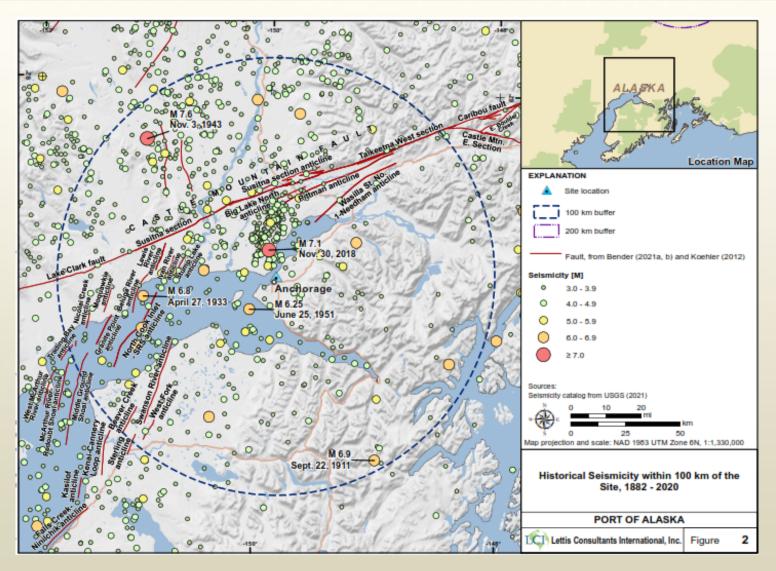
Site-Specific Seismic Hazard Analyses and Development of Time Histories for the Port of Alaska

Ivan Wong, Nora Lewandowski, Brian Gray, Nesrin Yenihayat, Qimin Wu, and Arash Zandieh

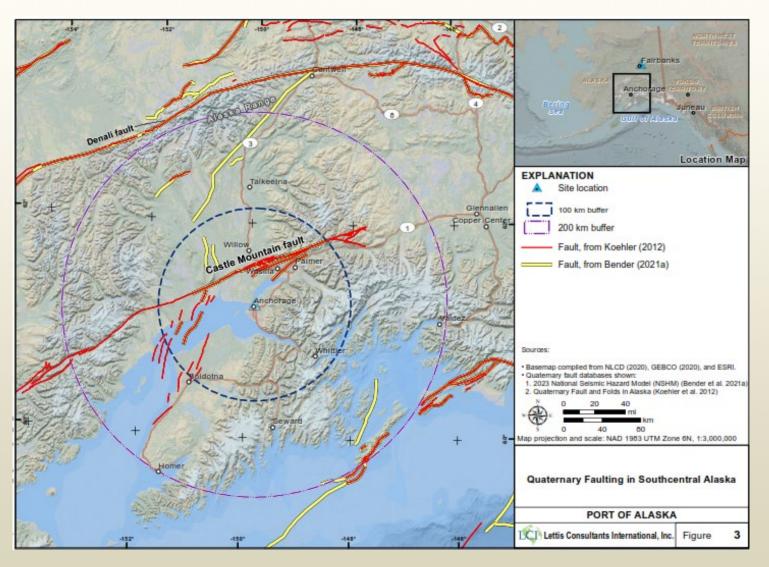
Lettis Consultants International, Inc.

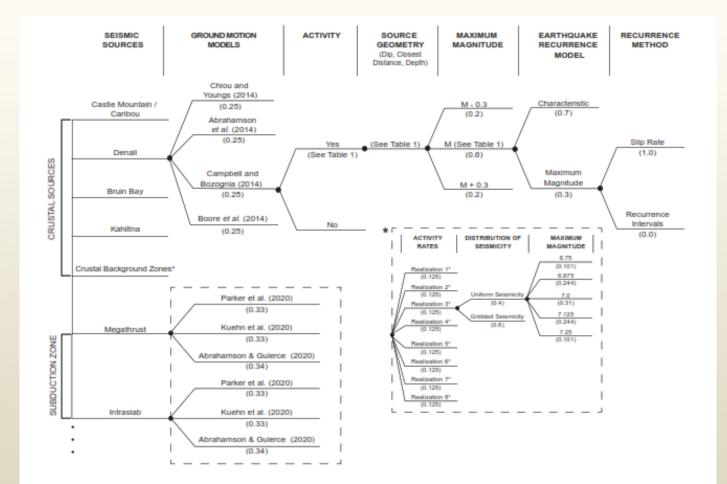

1000 Burnett Ave., Suite 350 Concord, CA 94520

Lettis Consultants International, Inc. EARTH SCIENCE CONSULTANTS 28 February 2023


Introduction

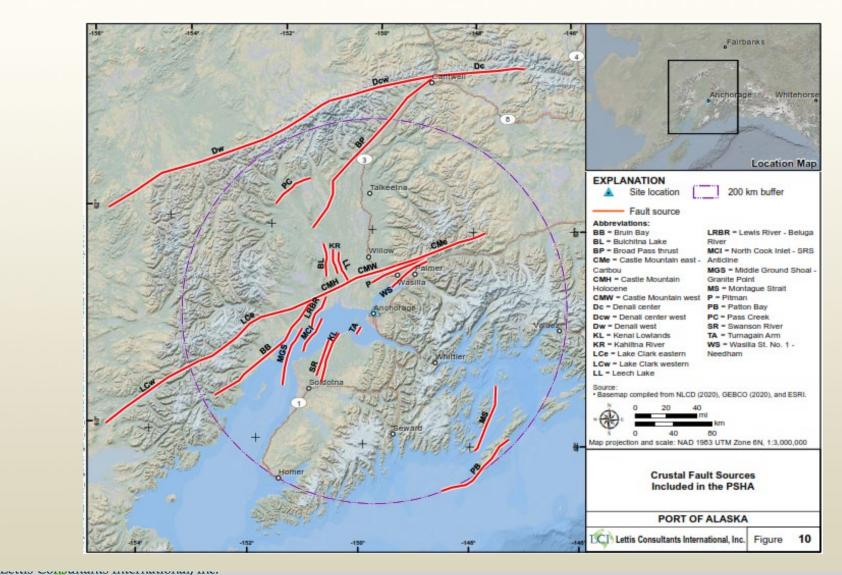
- Performed site-specific probabilistic and deterministic seismic hazard analyses
- Purpose was to develop the following design ground motions consistent with ASCE 61-23 and ASCE 7-22:
- MCE Maximum Considered Earthquake (2,475-Year Return Period)
- ▷DE Design Earthquake (975-Year RP)
- CLE Contingency Level Earthquake (475-Year RP)
- >OLE Operating Level Earthquake (72-Year RP)
- Hazard was calculated assuming Vs30 of 760 m/sec (firm rock) which was input into site response analyses
- CMS and time histories were also developed


Historical Seismicity in the Site Region, 1882-2020

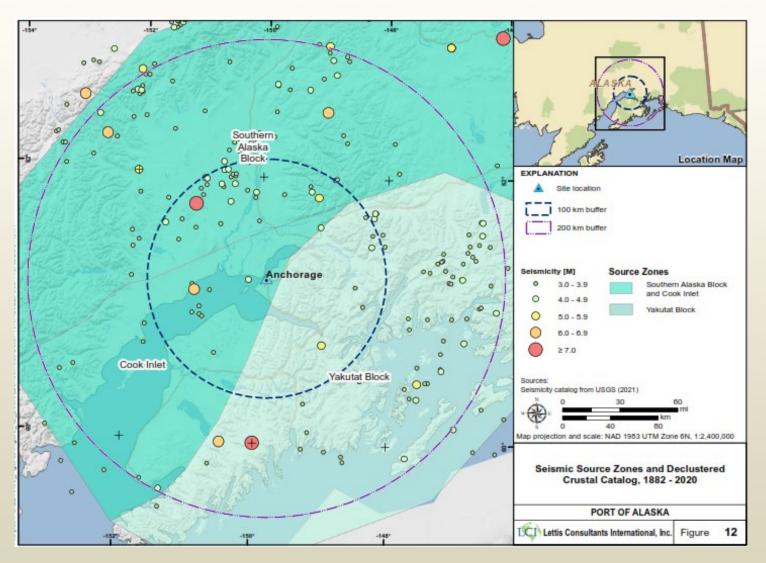

Historical Seismicity within 100 km of the Site, 1882-2020

Quaternary Faulting in South-Central Alaska

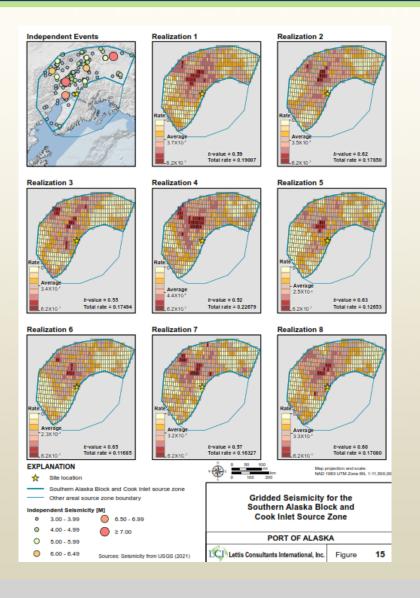
Generalized Seismic Hazard Model Logic Tree



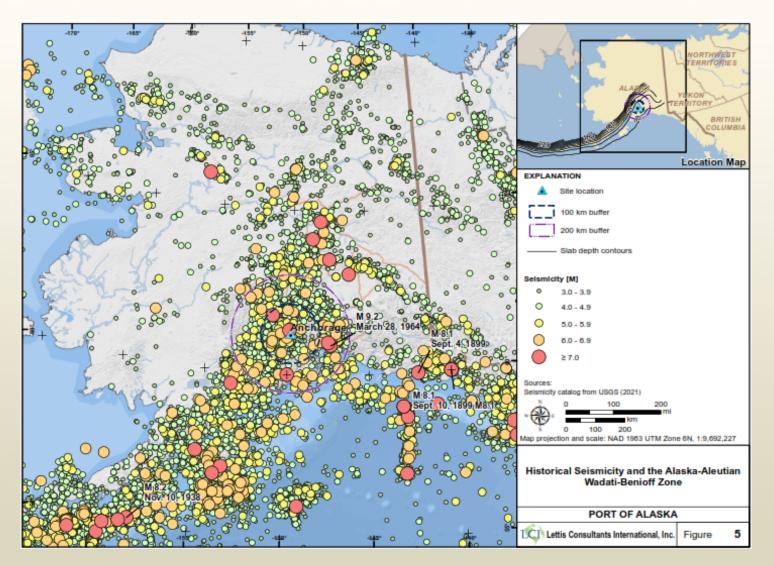
Notes:

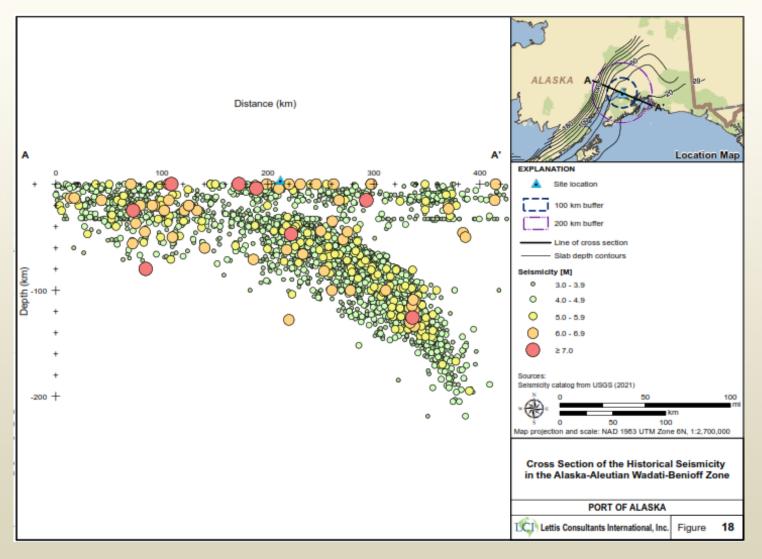

1. Additional epistemic uncertainty added to NGA-West2 GMMs using Al Atik and Youngs (2014).

Global median NGA-Sub GMMs are used and additional epistemic uncertainty was added following the approach of Al Atik and Youngs (2014).


Crustal Fault Sources Included in the PSHA

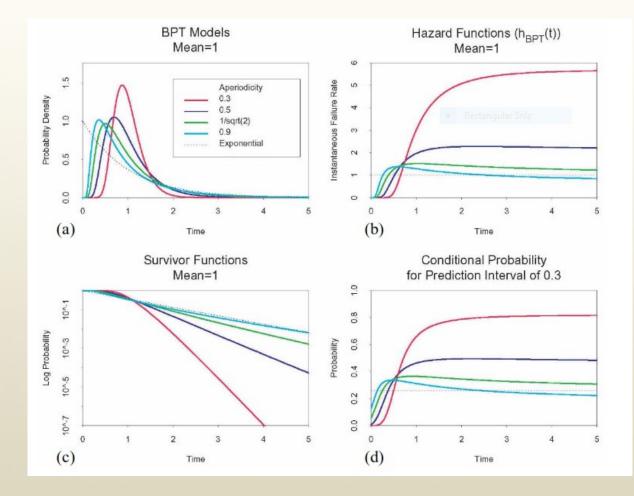
Seismic Source Zones and Declustered Crustal Catalog, 1882-2020


Gridded Seismicity for the Southern Alaska Block and Cook Inlet Source Zone


Segmentation of the Alaska-Aleutian Subduction Zone

Historical Seismicity and the Alaska-Aleutian Wadati-Benioff Zone

Cross Section of the Historical Seismicity in the Alaska-Aleutian Wadati-Benioff Zone

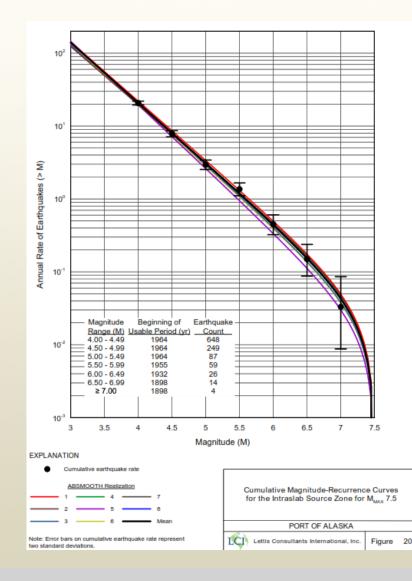

Contour Map of Top of Megathrust and Wadati-Benioff Zone

Seismic Source Parameters for Alaskan Subduction Zone

Fault Name	Probability of Activity	Rupture Model	Source	Preferred Mmax (M)	b-value	Dip (degrees)	Rupture Depth (km)	Recurrence Interval (Yrs)	Comments
Eastern section	1.0	Unsegmented	Kodiak +	9.1 (0.2)	1.00	3.0 N (0.2)	25 (0.2)	500 (0.2)	1964 Earthquake
(Western		(0.7)	PWS/WY	9.2 (0.6)		6.0 N (0.6)	35 (0.6)	600 (0.6)	
Yakutat/Prince				9.3 (0.2)		9.0 N (0.2)	50 (0.2)	700 (0.2)	
William		Segmented (0.3)	PWS/WY	8.8 (0.2)	1.00	3.0 N (0.2)	25 (0.2)	500 (0.2)	
Sound/Kodiak)				9.0 (0.6)		6.0 N (0.6)	35 (0.6)	600 (0.6)	
				9.2 (0.2)		9.0 N (0.2)	50 (0.2)	700 (0.2)	
			Kodiak	8.5 (0.2)	1.00	5.0 N (0.2)	30 (0.5)	400 (0.2)	Ruptured independently at
				8.8 (0.6)		7.0 N (0.6)	50 (0.5)	500 (0.6)	least 4 times in past 2000
				9.1 (0.2)		9.0 N (0.2)		600 (0.2)	years. One to two times
									ruptured in the same time
									period with PWS.
Semidi	1.0	Unsegmented		7.9 (0.2)	0.71	6 N (0.5)	20 (0.2)	180 (0.2)	Ruptured in 1788 and 1938.
		(1.0)		8.2 (0.6)		10 N (0.5)	24 (0.6)	225 (0.6)	RI 180-270 years.
				8.5 (0.2)			28 (0.2)	270 (0.2)	

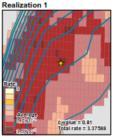
BPT Model

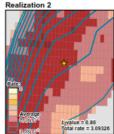
Paleoseismic Event Ages and Recurrence Intervals for 1964 Earthquakes (Source: Shennan et al., 2014)

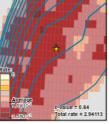

Modelled age (years BP)	from	to	%	μ	σ	m	N sites	N samples
EQ1	902	837	95.4	870	17	871	9	34
EQ2	1484	1397	95.4	1440	21	1441	7	17
EQ3	2102	2006	95.4	2052	27	2050	6	9
EQ4	2685	2540	95.4	2615	38	2618	5	13
EQ5	3216	3037	95.4	3131	43	3131	2	5
EQ6	3662	3475	95.4	3550	47	3541	1	7
Modelled interval (years)	Modelled interval (years)							
AD1964 to EQ1	850	915	95.4	883	17	885		
EQ1 to EQ2	517	625	95.4	571	27	571		
EQ2 to EQ3	545	680	95.4	611	35	611		
EQ3 to EQ4	470	653	95.4	563	47	565		
EQ4 to EQ5	403	635	95.4	517	58	516		
EQ5 to EQ6	299	550	95.4	419	64	415		
Mean interval AD1964 to EQ6	518	558	95.4	536	10	535		
Mean interval EQ1 to EQ6	579	612	95.4	594	8	593		

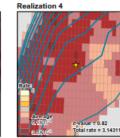
Time-Dependent Equivalent Poisson Recurrence Intervals

Source	Poisson Recurrence Interval (yr)	Poisson Recurrence Interval Weight	cov	COV Weight	BPT Probability	Equivalent Poisson Rate (1/yr)	Equivalent Poisson Recurrence Interval (yr)	Equivalent Poisson Recurrence Interval Weight
	500	0.2	0.3	0.5	1.65E-08	3.29E-10	> 100,000,000	0.1
	600	0.6	0.3	0.5	1.09E-10	2.17E-12	> 100,000,000	0.3
	700	0.2	0.3	0.5	6.50E-13	1.30E-14	> 100,000,000	0.1
	500	0.2	0.5	0.4	6.33E-04	1.27E-05	78,989	0.08
Kodiak+PWS/WY	600	0.6	0.5	0.4	9.80E-05	1.96E-06	509,954	0.24
	700	0.2	0.5	0.4	1.48E-05	2.96E-07	3,382,171	0.08
	500	0.2	0.7	0.1	1.34E-02	2.71E-04	3,695	0.02
	600	0.6	0.7	0.1	5.03E-03	1.01E-04	9,908	0.06
	700	0.2	0.7	0.1	1.86E-03	3.72E-05	26,857	0.02
	400	0.2	0.3	0.5	2.33E-06	4.66E-08	21,445,466	0.1
	500	0.6	0.3	0.5	1.65E-08	3.29E-10	> 100,000,000	0.3
	600	0.2	0.3	0.5	1.09E-10	2.17E-12	> 100,000,000	0.1
	400	0.2	0.5	0.4	4.04E-03	8.10E-05	12,339	0.08
Kodiak	500	0.6	0.5	0.4	6.33E-04	1.27E-05	78,989	0.24
	600	0.2	0.5	0.4	9.80E-05	1.96E-06	509,954	0.08
	400	0.2	0.7	0.1	3.57E-02	7.27E-04	1,375	0.02
	500	0.6	0.7	0.1	1.34E-02	2.71E-04	3,695	0.06
	600	0.2	0.7	0.1	5.03E-03	1.01E-04	9,908	0.02

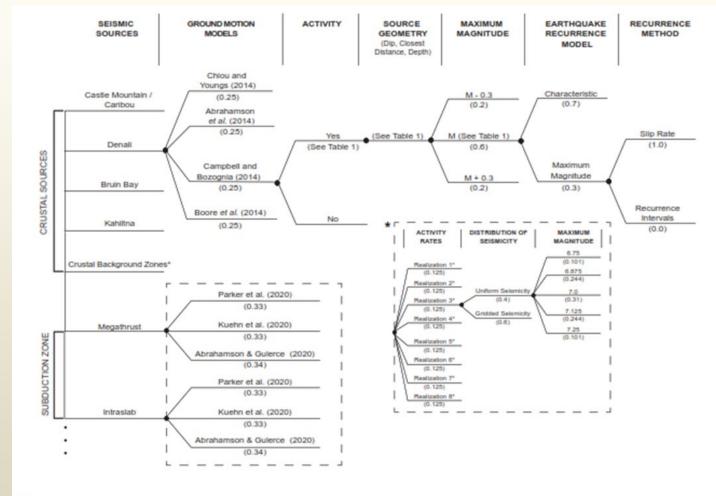

Note: Recurrence intervals for Segmented PWS/WY are the same as those for Kodiak+PWS/WY.


Cumulative Magnitude-Recurrence Curves for the Intraslab Source Zone for Mmax 7.5


Gridded Seismicity for the Intraslab Zone



Realization 3


Realization 5 Value = 0.87 Total rate = 2.60756

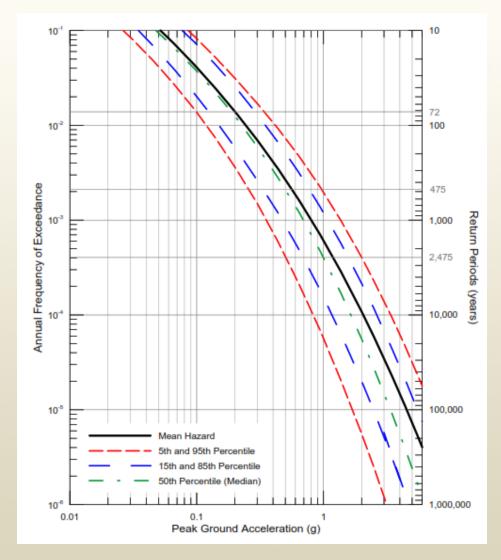
21

Realization 6 Realization 7 Realization 8 t-value = 0.84 Total rate = 2.82002 b-value = 0.83 Total rate = 3.09693 t-value = 0.81 Total rate = 3.07805 EXPLANATION Map projection and scale: NAD 1983 UTM Zone 6N, 1:6,000,000 * Site location Slab block boundary ent Selsmicity [M Gridded Seismicity for the Intraslab Zone 4.00 - 4.99 5.00 - 5.99 6.00 - 6.49 PORT OF ALASKA 6.50 - 6.99 ICI Lettis Consultants International, Inc. Figure \bigcirc Sources: Seismicity from USGS (2021) ≥ 7.00

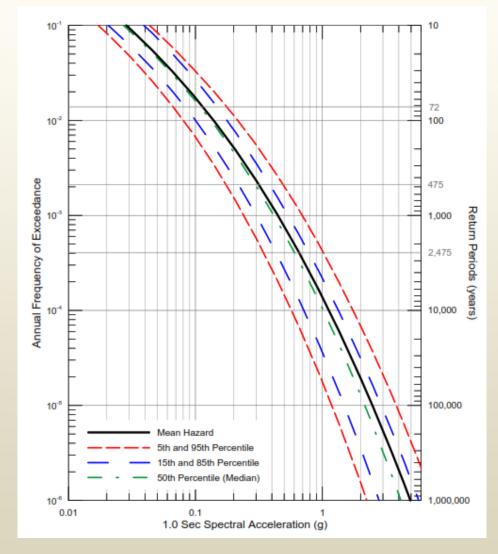
Letto Consultanto Internationaly inc. EARTH SCIENCE CONSULTANTS

Ground Motion Models

Notes:


1. Additional epistemic uncertainty added to NGA-West2 GMMs using AI Atik and Youngs (2014).

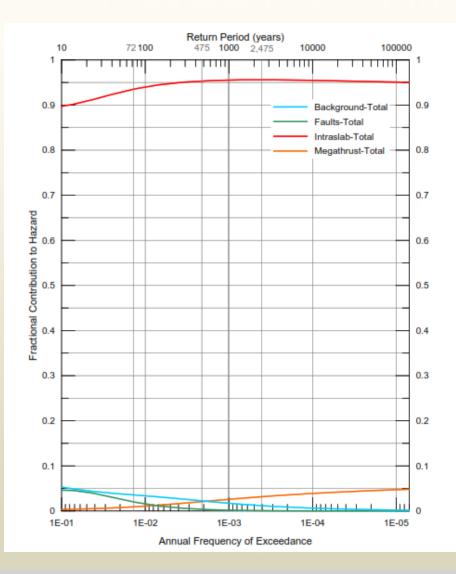
Global median NGA-Sub GMMs are used and additional epistemic uncertainty was added following the approach of Al Atik and Youngs (2014).


Basin Effects

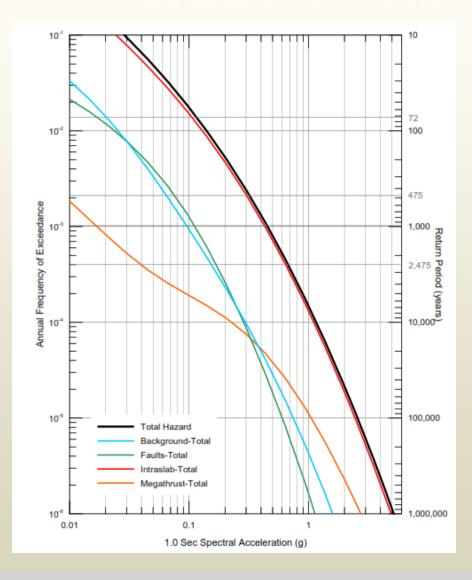
- Moschetti et al. (2021) computed ground motion residuals from 44 intermediate earthquakes and suggested significant basin amplification in Cook Inlet that scales with basin depth and exhibits maximum amplification of about two at 1 sec.
- Based on Shellenbaum et al. (2010), we estimated the depth to basement rock beneath the Port is about 1.0 km (Z2.5).
- The NGA-Sub GMMs (global or Alaska) do not have basin factors.
- Based on discussions with Morgan Moschetti (USGS), we used the Puget Sound basin amp factors and included them in the global models.

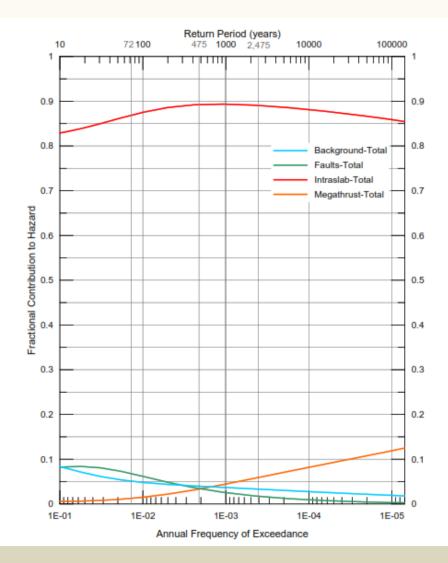
Seismic Hazard Curves for Peak Horizontal Acceleration for Vs30 760 m/sec

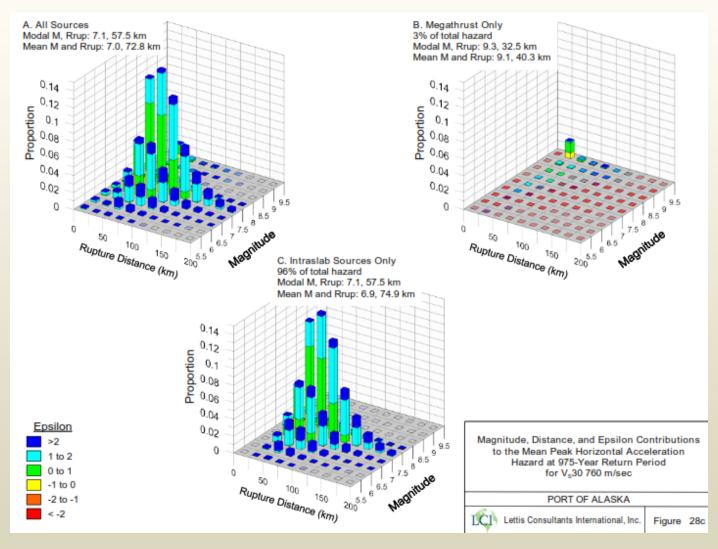
Seismic Hazard Curves for 1.0 Sec Horizontal Spectral Acceleration for Vs30 760 m/sec

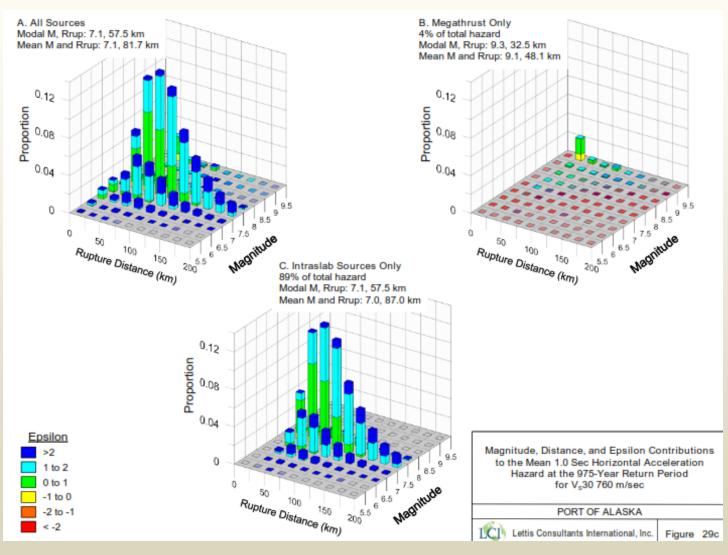

Probabilistic Ground Motions at Selected Return Periods

RETURN PERIOD (YEARS)	PGA (G) MEAN [5TH, 95TH PERCENTILES]	1.0 SEC SA (G) MEAN [5TH, 95TH PERCENTILES]		
72	0.201 [0.099,0.340]	0.115 [0.067,0.176]		
475	0.563 [0.257,0.967]	0.320 [0.174,0.490]		
975	0.791 [0.350,1.349]	0.449 [0.237,0.686]		
2,475	1.187 [0.504,2.000]	0.671 [0.344,1.019]		

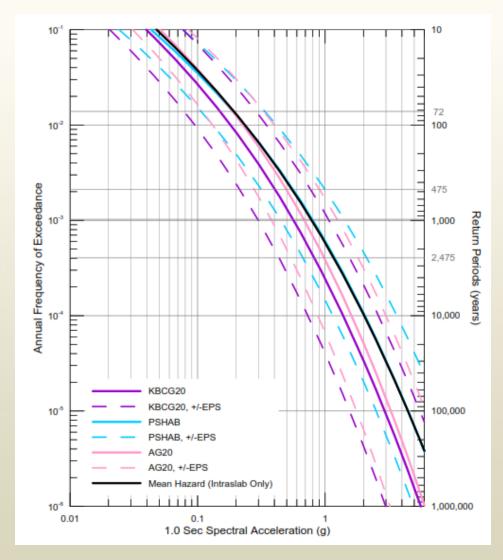

Seismic Source Contributions to Mean Peak Horizontal Acceleration Hazard for Vs30 760 m/sec

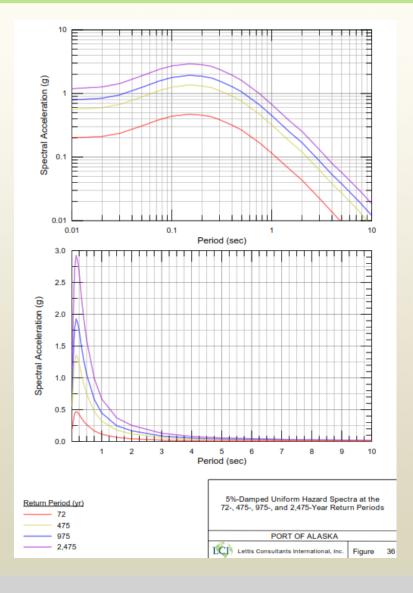

Seismic Source Fractional Contributions to Mean Peak Horizontal Acceleration Hazard for Vs30 760 m/sec


Seismic Source Contributions to Mean 1.0 Sec Horizontal Acceleration Hazard for Vs30 760 m/sec


Seismic Source Fractional Contributions to Mean 1.0 Sec Horizontal Acceleration Hazard for Vs30 760 m/sec

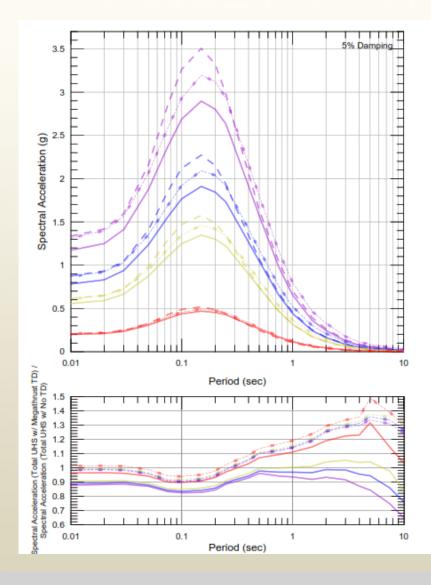
Magnitude, Distance, and Epsilon Contributions to the Mean Peak Horizontal Acceleration Hazard at 975-Year Return Period for Vs30 760 m/sec


Magnitude, Distance, and Epsilon Contributions to the Mean 1.0 Sec Horizontal Acceleration Hazard at the 975-Year Return Period for Vs30 760 m/sec


Controlling Earthquakes

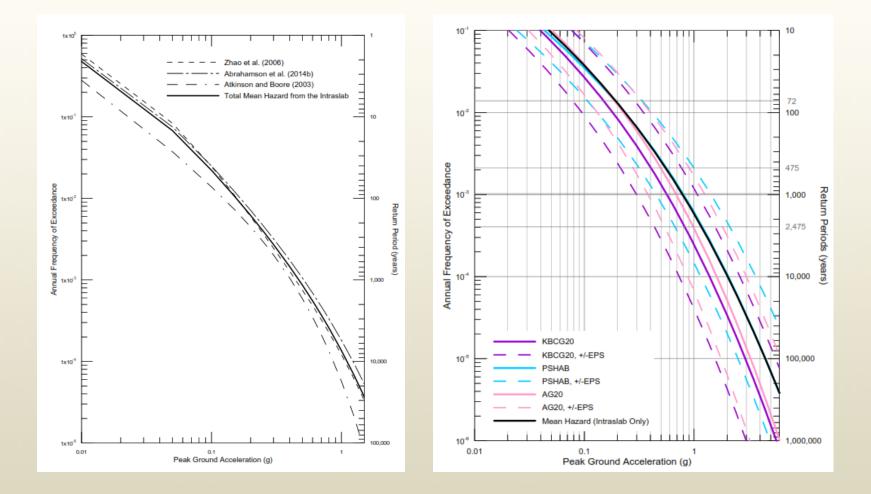
PERIOR				RIOD (YEARS)
PERIOD		72	475	975	2,475
	M*	7.1	7.1	7.1	7.1
PGA	D*	92.5	67.5	57.5	57.5
PGA	M-BAR	6.7	6.9	6.9	7.0
	D-BAR	90.6	76.7	72.8	68.5
	М*	7.1	7.1	7.1	7.1
0.2 SEC	D*	92.5	67.5	57.5	57.5
0.2 SEC	M-BAR	6.7	6.9	6.9	7.0
	D-BAR	92.3	78.2	74.2	69.7
	М*	7.1	7.1	7.1	9.3
1.0 SEC	D*	37.5	37.5	57.5	32.5
1.0 SEC	M-BAR	6.9	7.1	7.1	7.1
	D-BAR	D* 92.5 67.5 BAR 6.7 6.9 BAR 90.6 76.7 W* 7.1 7.1 D* 92.5 67.5 BAR 90.6 76.7 W* 7.1 7.1 D* 92.5 67.5 BAR 6.7 6.9 BAR 92.3 78.2 M* 7.1 7.1 D* 37.5 37.5 BAR 105.8 87.2 M* 7.1 7.1 D* 37.5 37.5 BAR 105.8 87.2 M* 7.1 7.1 D* 37.5 37.5 BAR 107.4 87.2 M* 7.1 7.1 D* 37.5 37.5 BAR 107.4 87.2 M* 7.1 7.1 D* 37.5 37.5 BAR 7.0	87.2	81.7	75.6
	М*	7.1	7.1	7.1	9.3
1.5 SEC	D*	37.5	37.5	37.5	32.5
1.5 SEC	M-BAR	7.0	7.1	7.1	7.1
	D-BAR	107.4	87.2	81.2	74.5
	M*	7.1	7.1	7.1	9.3
2.0 SEC	D*	37.5	37.5	37.5	32.5
2.0 SEC	M-BAR	7.0	7.1	7.2	7.2
	D-BAR	109.6	88.7	82.3	75.2

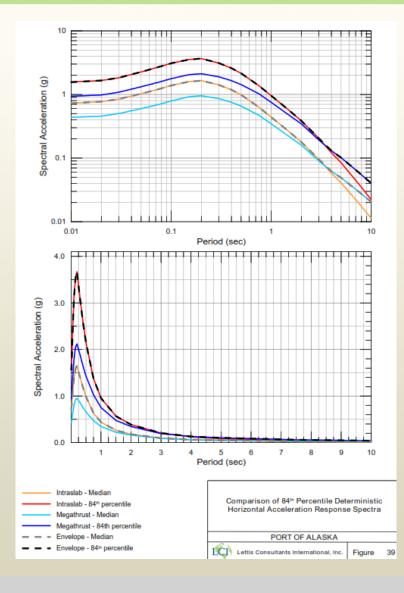
Sensitivity of Mean 1.0 Sec Horizontal Spectral Acceleration to Intraslab GMMs for Vs30 760 m/sec


5%-Damped Uniform Hazard Spectra at the 72-, 475-, 975-, and 2,475-Year Return Periods

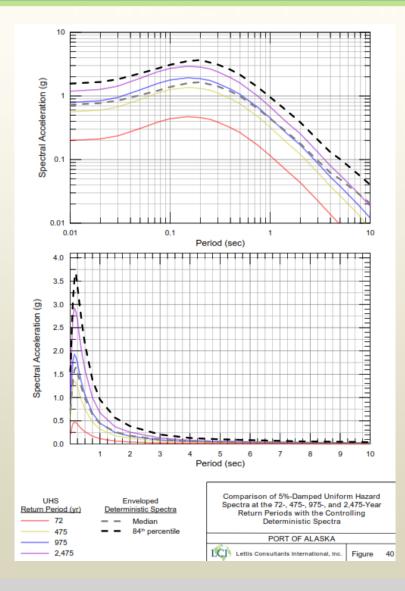
Horizontal UHS for Vs30 760 m/sec

	HORIZONTAL SPECTRAL ACCELERATION (g)						
PERIOD (SEC)	72-Year	475-Year	975-Year	2,475-Year			
	RETURN PERIOD	RETURN PERIOD	RETURN PERIOD	RETURN PERIOD			
0.01	0.201	0.563	0.791	1.187			
0.02	0.211	0.597	0.841	1.266			
0.03	0.236	0.672	0.949	1.428			
0.05	0.308	0.881	1.247	1.895			
0.075	0.388	1.109	1.573	2.398			
0.1	0.440	1.259	1.784	2.715			
0.15	0.472	1.361	1.929	2.927			
0.2	0.456	1.313	1.864	2.835			
0.25	0.430	1.232	1.749	2.664			
0.3	0.387	1.106	1.568	2.385			
0.4	0.318	0.908	1.283	1.943			
0.5	0.265	0.750	1.058	1.595			
0.75	0.168	0.473	0.665	0.997			
1.0	0.115	0.320	0.449	0.671			
1.5	0.065	0.178	0.249	0.372			
2.0	0.044	0.121	0.169	0.255			
3.0	0.022	0.062	0.087	0.130			
4.0	0.014	0.038	0.053	0.080			
5.0	0.0095	0.027	0.038	0.057			
7.5	0.0041	0.014	0.020	0.030			
10.0	0.0023	0.0081	0.012	0.019			


Sensitivity of UHS at the 72-, 475-, 975-, and 2,475-Year Return Periods to Z2.5 and Megathrust Time Dependence

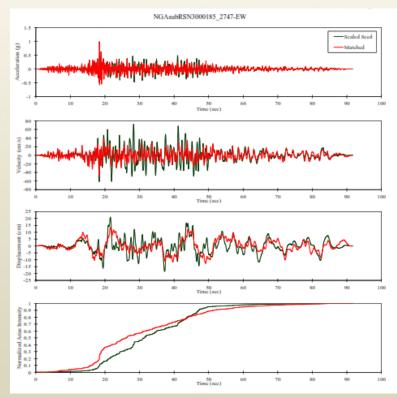

Comparison with the 2007 USGS National Seismic Hazard Map

		HORIZONTAL SPECTRAL ACCELERATION (g)						
PERIOD (SEC)	STUDY	72-YEAR RETURN PERIOD	475-Year Return Period	975-Year Return Period	2,475-YEAR RETURN PERIOD			
	USGS 2007	0.211	0.435	0.543	0.691			
PGA	This Study	0.201	0.563	0.791	1.187			
	Comparison	-5%	29%	46%	72%			
	USGS 2007	0.148	0.345	0.454	0.615			
1.0	This Study	0.115	0.320	0.449	0.671			
	Comparison	-22%	-7%	-1%	9%			


Comparison Between 2014 and 2023 Analyses

Comparison of 84th Percentile Deterministic Horizontal Acceleration Response Spectra

Comparison of 5%-Damped Uniform Hazard Spectra at the 72-, 475-, 975-, and 2,475-Year Return Periods with the Controlling Deterministic Spectra



EARTH SCIENCE CONSULTANTS

39

Time Histories

- 11 sets of three-component were developed for the MCE, DE, CLE, and OLE design levels through spectral matching.
- Seed time histories were selected based on spectral shape and target Arias intensities and durations

Conclusions

- Computed the probabilistic and deterministic hazard for firm rock.
- The PSHA includes time-dependent behavior for the 1964 megathrust earthquakes and basin effects unlike the USGS National Seismic Hazard Maps for Alaska
- Hence the intraslab earthquakes control the hazard at the Port.
- We have used the global versions of the NGA-Sub GMMs and this is a source of significant uncertainty.
- Use of the NGA-Sub GMMs either the Alaskan or global versions result in increased hazard for southern Alaska due in part to the large aleatory sigmas.
- The site-specific probabilistic PGA hazard results are significantly higher than the 2007 National Seismic Hazard Maps but generally within 10% at 1 sec SA. It will be interesting to compare the site-specific results against the 2023 maps although the comparisons will not be apples-to-apples.